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Motivation for cryptanalysis

AES competition

announced in 1997
Rijndael selected in 2000
FIPS approved in 2001 (November)
2018 – no sign of a successor

DES – used more than 25 years
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Classical cryptanalysis

Brute-force

Differential cryptanalysis

Linear cryptanalysis

Algebraic cryptanalysis

Meet-in-the-middle, key-scheduling, sliding attack, cube attack...

Manual and skill-demanding

Goals of statistical testing as cryptanalysis:

Black-box method
Easy to use for cipher designers
Quick security margin estimate
Test wide set of properties
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Statistical testing

Example: Monobit test

Set of statistical tests – batteries:

Donald Knuth’s tests in TAoCP 2 (1969)
NIST STS (FIPS 140-2) (1998)
Dieharder (2004)
TestU01 (2007)

NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES
candidate algorithms. NIST (1999))
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Statistical testing as cryptanalysis

Analysis of cryptoprimitive’s output, but for what input?

PRNG, stream ciphers → stream, keystream

Block ciphers, hash functions → ?

Test confusion → use low entropy inputs

Test diffusion → use strict avalanche criterion, linear cryptanalysis scenario
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CryptoStreams

Generalized crypto-data generator



CryptoStreams

https://github.com/crocs-muni/CryptoStreams

> 100 cryptoprimitives

22 block ciphers (AES competition, TLS suite)
57 hash functions (SHA-3 competition)
32 stream ciphers (eSTREAM competition)
53 schemes of authenticated encryption (CAESAR)
6+ PRNGs (Master thesis in progress)

Round-reduced

10+ input strategies

Output postprocessing
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RTT – Randomness Testing Toolkit

https://github.com/crocs-muni/randomness-testing-toolkit

http://rtt.ics.muni.cz

RTT is a unification of statistical batteries

9 / 33

https://github.com/crocs-muni/randomness-testing-toolkit
http://rtt.ics.muni.cz


10 / 33



11 / 33



12 / 33



13 / 33



14 / 33



15 / 33



16 / 33



Results
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EACirc

Analyzing randomness using supervised learning

https://github.com/crocs-muni/eacirc

https://github.com/crocs-muni/eacirc


Motivation

Statistical batteries = fixed set of tests

We can construct data passing all batteries

Create tests while analyzing the data

Incremental improving using supervised learning

Individual (=statistical test) representation
Neighbourhood
Fitness
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EACirc test representation
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Problem optimization

Individual (=statistical test) representation

Simulated electronic circuit

Neighborhood

Changes of connectors and node functions

Fitness

Evaluate on 500 QRND reference vectors and 500 analyzed vectors
Fitness = # correct guesses / 1000

Optimization methods:

Evolutionary algorithms
Single-solution heuristics – iterated local search, neighborhood search, guided local
search, simulated annealing. . .
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Approach advantages and limitations

+ Automatic

+ Better interpretation

+ Adapts to learning data

+ Simple distinguisher after learning

− Only byte level bias

− Only local bias

− Huge solution space

+ Surpasses NIST STS

− Dieharder and TestU01 are still superior
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BoolTest

Testing randomness with polynomials

https://github.com/crocs-muni/booltest

https://github.com/crocs-muni/booltest


Motivation

EACirc cannot detect bit-level bias

EACirc needs reference data

Bias is often correlation of some bits

Polynomials in algebraic normal form: f : {0, 1}b → {0, 1} (b for block length).
E.g., f (x0, x1, . . . , xb) = x2 · x34 + x7 · x15
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Approach advantages and limitations

+ Superior test for < 100 MB to all batteries

+ Found practical distinguishers in glibc rand() and Java Random (LCG variants)

+ Direct interpretation – what bits are correlated

+ Single run in order of seconds

Comparable with batteries for 100 MB, weaker than TestU01 for GBs

− Limited polynomial complexity by the estimate phase

− Will find correlations only in close bits

≤1024-bits blocks for practical reasons
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BoolTest results
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BoolTest heatmap visualisation – AES 10 rounds – ”random” reference

Source: Mečko, Vladiḿır. Interpretation and speedup of a randomness testing via the boolean
functions, Master thesis, Faculty of Informatics, Masaryk University (2018) 28 / 33



BoolTest heatmap visualisation – AES 3 rounds – structure
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BoolTest heatmap visualisation – RC4 – extreme distinguisher

f = x7x135
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Overall conclusion

Statistical testing in a comprehensive study

Security margins for 40 cryptoprimitives using four input strategies

Novel practical results on Rabbit stream cipher

Advancements in test interpretation

EACirc and BoolTest
RTT’s visualisation and test interpretation
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Project (and involvement) overview

CryptoStreams – generator of cryptographic material

Main author – initial idea, leading developer

Randomness Testing Toolkit

Tester and user

EACirc – statistical test using evolutionary circuits

Project started in 2008
Kub́ıček, Novotný, Švenda, and Martin Ukrop. New results on reduced-round Tiny
Encryption Algorithm using genetic programming, IEEE Infocommunications (2016)
Master thesis on optimisation methods

BoolTest – generator of cryptographic material
Sýs, Klinec, Kub́ıček, and Švenda. BoolTest: The fast randomness testing strategy based
on boolean functions with application to DES, 3-DES, MD5, MD6 and SHA-256,
forthcoming in Communications in computer and information science, Springer, 2018
Experiment design and execution
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Questions?


