
Automated cryptanalysis using statistical testing

Karel Kub́ıček

Centre for Research on Cryptography and Security (CRoCS), Masaryk University, Brno, Czech Republic

June 21, 2018



Outline

1 Statistical testing in cryptanalysis

2 CryptoStreams and Randomness Testing Toolkit

Current research

3 Statistical testing tool EACirc

Master thesis

4 Statistical testing tool BoolTest

Current research of our group

2 / 33



Motivation for cryptanalysis

AES competition

announced in 1997
Rijndael selected in 2000
FIPS approved in 2001 (November)
2018 – no sign of a successor

DES – used more than 25 years

3 / 33



Motivation for cryptanalysis

AES competition

announced in 1997
Rijndael selected in 2000
FIPS approved in 2001 (November)
2018 – no sign of a successor

DES – used more than 25 years

3 / 33



Motivation for cryptanalysis

AES competition

announced in 1997
Rijndael selected in 2000
FIPS approved in 2001 (November)
2018 – no sign of a successor

DES – used more than 25 years

3 / 33



Classical cryptanalysis

Brute-force

Differential cryptanalysis

Linear cryptanalysis

Algebraic cryptanalysis

Meet-in-the-middle, key-scheduling, sliding attack, cube attack...

Manual and skill-demanding

Goals of statistical testing as cryptanalysis:

Black-box method
Easy to use for cipher designers
Quick security margin estimate
Test wide set of properties

4 / 33



Classical cryptanalysis

Brute-force

Differential cryptanalysis

Linear cryptanalysis

Algebraic cryptanalysis

Meet-in-the-middle, key-scheduling, sliding attack, cube attack...

Manual and skill-demanding

Goals of statistical testing as cryptanalysis:

Black-box method
Easy to use for cipher designers
Quick security margin estimate
Test wide set of properties

4 / 33



Classical cryptanalysis

Brute-force

Differential cryptanalysis

Linear cryptanalysis

Algebraic cryptanalysis

Meet-in-the-middle, key-scheduling, sliding attack, cube attack...

Manual and skill-demanding

Goals of statistical testing as cryptanalysis:

Black-box method
Easy to use for cipher designers
Quick security margin estimate
Test wide set of properties

4 / 33



Statistical testing

Example: Monobit test

Set of statistical tests – batteries:

Donald Knuth’s tests in TAoCP 2 (1969)
NIST STS (FIPS 140-2) (1998)
Dieharder (2004)
TestU01 (2007)

NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES
candidate algorithms. NIST (1999))

5 / 33



Statistical testing

Example: Monobit test

Set of statistical tests – batteries:

Donald Knuth’s tests in TAoCP 2 (1969)
NIST STS (FIPS 140-2) (1998)
Dieharder (2004)
TestU01 (2007)

NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES
candidate algorithms. NIST (1999))

5 / 33



Statistical testing

Example: Monobit test

Set of statistical tests – batteries:

Donald Knuth’s tests in TAoCP 2 (1969)
NIST STS (FIPS 140-2) (1998)
Dieharder (2004)
TestU01 (2007)

NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES
candidate algorithms. NIST (1999))

5 / 33



Statistical testing

Example: Monobit test

Set of statistical tests – batteries:

Donald Knuth’s tests in TAoCP 2 (1969)
NIST STS (FIPS 140-2) (1998)
Dieharder (2004)
TestU01 (2007)

NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES
candidate algorithms. NIST (1999))

5 / 33



Statistical testing as cryptanalysis

Analysis of cryptoprimitive’s output, but for what input?

PRNG, stream ciphers → stream, keystream

Block ciphers, hash functions → ?

Test confusion → use low entropy inputs

Test diffusion → use strict avalanche criterion, linear cryptanalysis scenario

6 / 33



Statistical testing as cryptanalysis

Analysis of cryptoprimitive’s output, but for what input?

PRNG, stream ciphers → stream, keystream
Block ciphers, hash functions → ?

Test confusion → use low entropy inputs

Test diffusion → use strict avalanche criterion, linear cryptanalysis scenario

6 / 33



Statistical testing as cryptanalysis

Analysis of cryptoprimitive’s output, but for what input?

PRNG, stream ciphers → stream, keystream
Block ciphers, hash functions → ?

Test confusion → use low entropy inputs

Test diffusion → use strict avalanche criterion, linear cryptanalysis scenario

6 / 33



CryptoStreams

Generalized crypto-data generator



CryptoStreams

https://github.com/crocs-muni/CryptoStreams

> 100 cryptoprimitives

22 block ciphers (AES competition, TLS suite)
57 hash functions (SHA-3 competition)
32 stream ciphers (eSTREAM competition)
53 schemes of authenticated encryption (CAESAR)
6+ PRNGs (Master thesis in progress)

Round-reduced

10+ input strategies

Output postprocessing

8 / 33

https://github.com/crocs-muni/CryptoStreams


RTT – Randomness Testing Toolkit

https://github.com/crocs-muni/randomness-testing-toolkit

http://rtt.ics.muni.cz

RTT is a unification of statistical batteries

9 / 33

https://github.com/crocs-muni/randomness-testing-toolkit
http://rtt.ics.muni.cz


10 / 33



11 / 33



12 / 33



13 / 33



14 / 33



15 / 33



16 / 33



Results

17 / 33



Results

17 / 33



Results

18 / 33



EACirc

Analyzing randomness using supervised learning

https://github.com/crocs-muni/eacirc

https://github.com/crocs-muni/eacirc


Motivation

Statistical batteries = fixed set of tests

We can construct data passing all batteries

Create tests while analyzing the data

Incremental improving using supervised learning

Individual (=statistical test) representation
Neighbourhood
Fitness

20 / 33



Motivation

Statistical batteries = fixed set of tests

We can construct data passing all batteries

Create tests while analyzing the data

Incremental improving using supervised learning

Individual (=statistical test) representation
Neighbourhood
Fitness

20 / 33



EACirc test representation

IN
0

IN
1

IN
2

IN
3

IN
4

IN
5

IN
6

IN
7

MASK
34

SHIR
11

NOT
106

CONS
122

AND
19

SHIL
181

AND
152

NOR
52

AND
10

OR
188

SHIL
22

OR
246

SHIR
82

MASK
107

NOP
176

NOP
73

ROTR
98

NOP
79

XOR
30

NOP
228

NOR
160

SHIR
221

NOP
32

XOR
187

SHIL
190

ROTR
146

ROTL
109

NOT
247

CONS
229

ROTL
24

OR
210

SHIL
191

NAND
244

21 / 33



Problem optimization

Individual (=statistical test) representation

Simulated electronic circuit

Neighborhood

Changes of connectors and node functions

Fitness

Evaluate on 500 QRND reference vectors and 500 analyzed vectors
Fitness = # correct guesses / 1000

Optimization methods:

Evolutionary algorithms
Single-solution heuristics – iterated local search, neighborhood search, guided local
search, simulated annealing. . .

22 / 33



Problem optimization

Individual (=statistical test) representation

Simulated electronic circuit

Neighborhood

Changes of connectors and node functions

Fitness

Evaluate on 500 QRND reference vectors and 500 analyzed vectors
Fitness = # correct guesses / 1000

Optimization methods:

Evolutionary algorithms
Single-solution heuristics – iterated local search, neighborhood search, guided local
search, simulated annealing. . .

22 / 33



Approach advantages and limitations

+ Automatic

+ Better interpretation

+ Adapts to learning data

+ Simple distinguisher after learning

− Only byte level bias

− Only local bias

− Huge solution space

+ Surpasses NIST STS

− Dieharder and TestU01 are still superior

23 / 33



Approach advantages and limitations

+ Automatic

+ Better interpretation

+ Adapts to learning data

+ Simple distinguisher after learning

− Only byte level bias

− Only local bias

− Huge solution space

+ Surpasses NIST STS

− Dieharder and TestU01 are still superior

23 / 33



BoolTest

Testing randomness with polynomials

https://github.com/crocs-muni/booltest

https://github.com/crocs-muni/booltest


Motivation

EACirc cannot detect bit-level bias

EACirc needs reference data

Bias is often correlation of some bits

Polynomials in algebraic normal form: f : {0, 1}b → {0, 1} (b for block length).
E.g., f (x0, x1, . . . , xb) = x2 · x34 + x7 · x15

25 / 33



Motivation

EACirc cannot detect bit-level bias

EACirc needs reference data

Bias is often correlation of some bits

Polynomials in algebraic normal form: f : {0, 1}b → {0, 1} (b for block length).
E.g., f (x0, x1, . . . , xb) = x2 · x34 + x7 · x15

25 / 33



Approach advantages and limitations

+ Superior test for < 100 MB to all batteries

+ Found practical distinguishers in glibc rand() and Java Random (LCG variants)

+ Direct interpretation – what bits are correlated

+ Single run in order of seconds

Comparable with batteries for 100 MB, weaker than TestU01 for GBs

− Limited polynomial complexity by the estimate phase

− Will find correlations only in close bits

≤1024-bits blocks for practical reasons

26 / 33



BoolTest results

27 / 33



BoolTest heatmap visualisation – AES 10 rounds – ”random” reference

Source: Mečko, Vladiḿır. Interpretation and speedup of a randomness testing via the boolean
functions, Master thesis, Faculty of Informatics, Masaryk University (2018) 28 / 33



BoolTest heatmap visualisation – AES 3 rounds – structure

29 / 33



BoolTest heatmap visualisation – RC4 – extreme distinguisher

f = x7x135

30 / 33



Overall conclusion

Statistical testing in a comprehensive study

Security margins for 40 cryptoprimitives using four input strategies

Novel practical results on Rabbit stream cipher

Advancements in test interpretation

EACirc and BoolTest
RTT’s visualisation and test interpretation

31 / 33



Project (and involvement) overview

CryptoStreams – generator of cryptographic material

Main author – initial idea, leading developer

Randomness Testing Toolkit

Tester and user

EACirc – statistical test using evolutionary circuits

Project started in 2008
Kub́ıček, Novotný, Švenda, and Martin Ukrop. New results on reduced-round Tiny
Encryption Algorithm using genetic programming, IEEE Infocommunications (2016)
Master thesis on optimisation methods

BoolTest – generator of cryptographic material
Sýs, Klinec, Kub́ıček, and Švenda. BoolTest: The fast randomness testing strategy based
on boolean functions with application to DES, 3-DES, MD5, MD6 and SHA-256,
forthcoming in Communications in computer and information science, Springer, 2018
Experiment design and execution

32 / 33



Questions?


