Automated cryptanalysis using statistical testing

Karel Kubíček

Centre for Research on Cryptography and Security (CRoCS), Masaryk University, Brno, Czech Republic

June 21, 2018

Outline

- Statistical testing in cryptanalysis
- CryptoStreams and Randomness Testing Toolkit
 - Current research
- 3 Statistical testing tool EACirc
 - Master thesis
- 4 Statistical testing tool BoolTest
 - Current research of our group

Motivation for cryptanalysis

Motivation for cryptanalysis

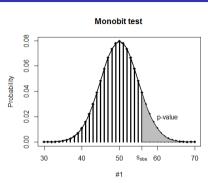
- AES competition
 - announced in 1997
 - Rijndael selected in 2000
 - FIPS approved in 2001 (November)
 - 2018 no sign of a successor

Motivation for cryptanalysis

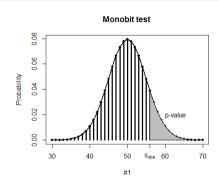
- AES competition
 - announced in 1997
 - Rijndael selected in 2000
 - FIPS approved in 2001 (November)
 - 2018 no sign of a successor
- DES used more than 25 years

Classical cryptanalysis

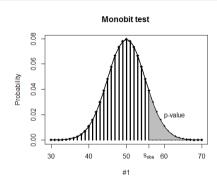
- Brute-force
- Differential cryptanalysis
- Linear cryptanalysis
- Algebraic cryptanalysis
- Meet-in-the-middle, key-scheduling, sliding attack, cube attack...


Classical cryptanalysis

- Brute-force
- Differential cryptanalysis
- Linear cryptanalysis
- Algebraic cryptanalysis
- Meet-in-the-middle, key-scheduling, sliding attack, cube attack...
- Manual and skill-demanding

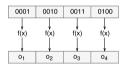

Classical cryptanalysis

- Brute-force
- Differential cryptanalysis
- Linear cryptanalysis
- Algebraic cryptanalysis
- Meet-in-the-middle, key-scheduling, sliding attack, cube attack...
- Manual and skill-demanding
- Goals of statistical testing as cryptanalysis:
 - Black-box method
 - Easy to use for cipher designers
 - Quick security margin estimate
 - Test wide set of properties


■ Example: Monobit test

- Example: Monobit test
- Set of statistical tests batteries:
 - Donald Knuth's tests in TAoCP 2 (1969)
 - NIST STS (FIPS 140-2) (1998)
 - Dieharder (2004)
 - TestU01 (2007)

- Example: Monobit test
- Set of statistical tests batteries:
 - Donald Knuth's tests in TAoCP 2 (1969)
 - NIST STS (FIPS 140-2) (1998)
 - Dieharder (2004)
 - TestU01 (2007)
- NIST STS used on AES competition (Soto, Juan. Randomness testing of the AES candidate algorithms. NIST (1999))

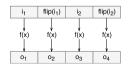


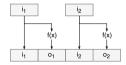
Statistical testing as cryptanalysis

- Analysis of cryptoprimitive's output, but for what input?
 - $\blacksquare \ \mathsf{PRNG}, \ \mathsf{stream} \ \mathsf{ciphers} \to \mathsf{stream}, \ \mathsf{keystream}$

Statistical testing as cryptanalysis

- Analysis of cryptoprimitive's output, but for what input?
 - lacktriangle PRNG, stream ciphers ightarrow stream, keystream
 - Block ciphers, hash functions → ?
 - lacktriangle Test confusion ightarrow use low entropy inputs


Statistical testing as cryptanalysis


- Analysis of cryptoprimitive's output, but for what input?
 - lacktriangle PRNG, stream ciphers o stream, keystream
 - Block ciphers, hash functions → ?
 - lacktriangle Test confusion ightarrow use low entropy inputs

0001	0010	0011	0100
f(x)	f(x)	f(x)	f(x)
01	02	03	04

 \blacksquare Test diffusion \rightarrow use strict avalanche criterion, linear cryptanalysis scenario

CryptoStreams

Generalized crypto-data generator

CryptoStreams

- https://github.com/crocs-muni/CryptoStreams
- > 100 cryptoprimitives
 - 22 block ciphers (AES competition, TLS suite)
 - 57 hash functions (SHA-3 competition)
 - 32 stream ciphers (eSTREAM competition)
 - 53 schemes of authenticated encryption (CAESAR)
 - 6+ PRNGs (Master thesis in progress)
- Round-reduced
- 10+ input strategies
- Output postprocessing

RTT – Randomness Testing Toolkit

- https://github.com/crocs-muni/randomness-testing-toolkit
- http://rtt.ics.muni.cz
- RTT is a unification of statistical batteries

Submit experiment

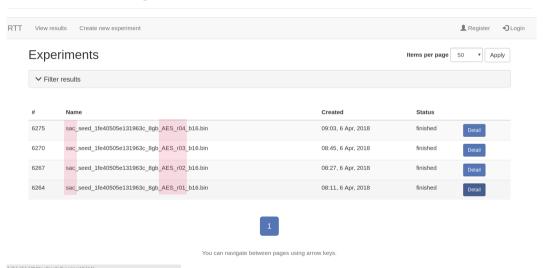
General

Experiment name

Binary data that will be analysed

Browse... No file selected.

The data is deleted after the analysis.


Battery application

- Switch all
- NIST Statistical Testing Suite
- Dieharder
- □ TestU01 Small Crush

You will be notified by email when the experiment finishes.

Randomness Testing Toolkit Interface for testing randomness.

11/33

Time of creation	08:27, 6 Apr, 2018
Start of computation	09:09, 6 Apr, 2018
End of computation	09:37, 6 Apr, 2018
Configuration file	default-8GB.json
Data file	AES_r02_b16.bin
Hash of data (SHA-256)	27a4270bb603ab431a724610d83a08418b7f490a1db8940a1b9f6c296ffd8ce8

Analysis done on data by statistical batteries

Name	Assessment	Passed tests	Total tests	
Dieharder	FAIL	6	27	Detail
NIST Statistical Testing Suite	FAIL	4	15	Detail
TestU01 Alphabit	FAIL	2	4	Detail
TestU01 Block Alphabit	FAIL	1	4	Detail
TestU01 Crush	FAIL	8	32	Detail
TestU01 Rabbit	FAIL	7	16	Detail
TestU01 Small Crush	FAIL	1	10	Detail

Time of creation	08:45, 6 Apr, 2018
Start of computation	09:13, 6 Apr, 2018
End of computation	09:47, 6 Apr, 2018
Configuration file	default-8GB.json
Data file	AES_r03_b16.bin
Hash of data (SHA-256)	83f0828ea5c5769a6e54efb8da08dcf76fcd543e2cce376f7fbe678b52881546

Analysis done on data by statistical batteries

Assessment	Passed tests	Total tests	
ОК	25	27	Detail
ОК	15	15	Detail
ОК	3	4	Detail
FAIL	1	4	Detail
FAIL	20	32	Detail
FAIL	12	16	Detail
Suspect	8	10	Detail
	OK OK OK FAIL FAIL	OK 25 OK 15 OK 3 FAIL 1 FAIL 20 FAIL 12	OK 25 27 OK 15 15 OK 3 4 FAIL 1 4 FAIL 20 32 FAIL 12 16

Number of passed tests	8
Total number of tests	10
Confidence level (alpha)	0.01
Name of the experiment	sac_seed_1fe40505e131963c_8gb_AES_r03_b16.bin

Tests included in battery

#	Name	Result	Test variants	
1	smarsa_BirthdaySpacings	passed	1	Detail
2	sknuth_Collision	passed	1	Detail
3	sknuth_Gap	passed	1	Detail
4	sknuth_SimpPoker	failed	1	Detail
5	sknuth_CouponCollector	passed	1	Detail
6	sknuth_MaxOft	passed	1	Detail
7	svaria_WeightDistrib	passed	1	Detail
8	smarsa_MatrixRank	passed	1	Detail
9	sstring_HammingIndep	passed	1	Detail
10	swalk_RandomWalk1	failed	1	Detail

7.251.253.249/ViewResults/Test/389026/

Test detail

ID	389026
Name	sknuth_SimpPoker
Result	failed
Variants count	1
Number of test in the battery	4
Partial alpha	0.01000000000000009
Name of the battery	TestU01 Small Crush

Test parameters

N	1
n	400000
r	24
d	64
k	64

Statistics

Name	Value	Result
Chi-square	1e-300	failed

Time of creation	09:03, 6 Apr, 2018
Start of computation	09:37, 6 Apr, 2018
End of computation	10:07, 6 Apr, 2018
Configuration file	default-8GB.json
Data file	AES_r04_b16.bin
Hash of data (SHA-256)	97bd81ff0953d6505d5d3d05a854210f102f81c60bb3968923849f94655533a5

Analysis done on data by statistical batteries

Name	Assessment	Passed tests	Total tests	
Dieharder	ОК	26	27	Detail
NIST Statistical Testing Suite	ОК	15	15	Detail
TestU01 Alphabit	ОК	4	4	Detail
TestU01 Block Alphabit	ОК	4	4	Detail
TestU01 Crush	ОК	32	32	Detail
TestU01 Rabbit	ОК	16	16	Detail
TestU01 Small Crush	ОК	10	10	Detail

Results

Results

Algorithm	Battery	CTR		HW		SAC		RPC	
AES	NIST Dieharder TestU01		3/10 3/10 3/10		2/10 3/10 3/10		2/10 3/10 3/10		-/10 1/10 1/10
BLOWFISH	NIST Dieharder TestU01		2/16 2/16 2/16		2/16 3/16 3/16		2/16 2/16 4/16		1/16 1/16 1/16
MARS	NIST Dieharder TestU01		-/16 -/16 -/16		-/16 -/16 -/16		-/16 -/16 -/16		-/16 -/16 -/16
TWOFISH	NIST Dieharder TestU01		2/16 2/16 2/16		3/16 3/16 3/16		2/16 2/16 3/16		1/16 1/16 1/16
SERPENT	NIST Dieharder TestU01		3/32 3/32 3/32		3/32 3/32 3/32		2/32 3/32 3/32		-/32 -/32 -/32
RC6	NIST Dieharder TestU01		4/20 4/20 4/20		4/20 4/20 4/20		3/20 3/20 4/20		-/20 1/20 2/20
SIMON	NIST		16/68		16/68		13/68		1/68

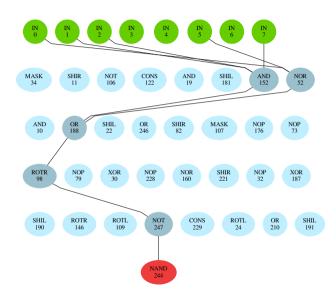
Results

Hash func- tion	Security margin		Block Security margin cipher			Stream cipher	Security margin			
Blake		2/14	AES		3/10	F-FCSR		1/5		
Grøstl		2/10	BLOWFISH		3/16	Grain		6/13		
JH		6/42	MARS		-/16	Chacha		3/20		
Keccak		3/24	TWOFISH		3/16	Salsa20		2/20		
MD6		9/104	SERPENT		3/32	Rabbit		4/4		
Skein		4/72	RC6		4/20	RC4		1/1		
Gost		1/32	SIMON		16/68	Trivium		-/1		
MD5		25/64	SPECK		8/32	MICKEY		-/1		
RIPEMD160		14/80	DES		5/16	SOSEMANU	IK 🗆	4/25		
SHA1		17/80	3-DES		3/16	HC-128		-/1		
SHA256		13/64	TEA		5/32					
Tiger		-/23	GOST		9/32					
Whirlpool		2/10	ARIA		3/12					
			CAMELLIA		4/18					
			CAST		3/12					
			IDEA		1/8					
			SEED		2/16					
Average [%]	H	15 (9–21)	Average [%]	中	20 (16–25)	Average [%]		31 (3–59)		

EACirc

Analyzing randomness using supervised learning

https://github.com/crocs-muni/eacirc


Motivation

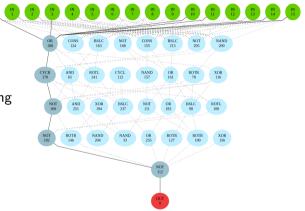
- Statistical batteries = fixed set of tests
- We can construct data passing all batteries

Motivation

- Statistical batteries = fixed set of tests
- We can construct data passing all batteries
- Create tests while analyzing the data
- Incremental improving using supervised learning
 - Individual (=statistical test) representation
 - Neighbourhood
 - Fitness

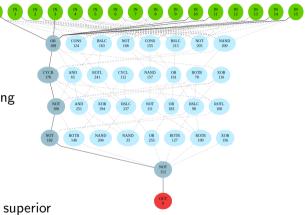
EACirc test representation

Problem optimization


- Individual (=statistical test) representation
 - Simulated electronic circuit
- Neighborhood
 - Changes of connectors and node functions
- Fitness
 - Evaluate on 500 QRND reference vectors and 500 analyzed vectors
 - Fitness = # correct guesses / 1000

Problem optimization

- Individual (=statistical test) representation
 - Simulated electronic circuit
- Neighborhood
 - Changes of connectors and node functions
- Fitness
 - Evaluate on 500 QRND reference vectors and 500 analyzed vectors
 - Fitness = # correct guesses / 1000
- Optimization methods:
 - Evolutionary algorithms
 - Single-solution heuristics iterated local search, neighborhood search, guided local search, simulated annealing. . .


Approach advantages and limitations

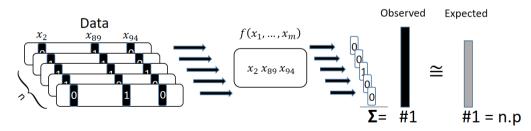
- + Automatic
- + Better interpretation
- + Adapts to learning data
- + Simple distinguisher after learning
- Only byte level bias
- Only local bias
- Huge solution space

Approach advantages and limitations

- + Automatic
- + Better interpretation
- + Adapts to learning data
- + Simple distinguisher after learning
- Only byte level bias
- Only local bias
- Huge solution space
- + Surpasses NIST STS
- Dieharder and TestU01 are still superior

BoolTest

Testing randomness with polynomials

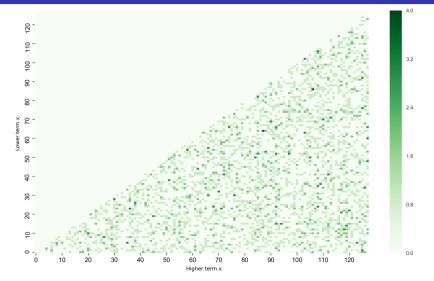

https://github.com/crocs-muni/booltest

Motivation

- EACirc cannot detect bit-level bias
- EACirc needs reference data
- Bias is often correlation of some bits

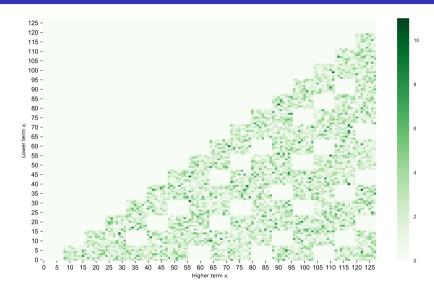
Motivation

- EACirc cannot detect bit-level bias
- EACirc needs reference data
- Bias is often correlation of some bits
- Polynomials in algebraic normal form: $f: \{0,1\}^b \to \{0,1\}$ (b for block length). E.g., $f(x_0, x_1, \dots, x_b) = x_2 \cdot x_{34} + x_7 \cdot x_{15}$

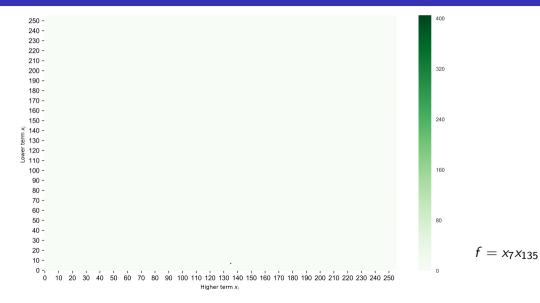

Approach advantages and limitations

- + Superior test for $< 100\,\mathrm{MB}$ to all batteries
 - + Found practical distinguishers in glibc rand() and Java Random (LCG variants)
- + Direct interpretation what bits are correlated
- + Single run in order of seconds
- Comparable with batteries for 100 MB, weaker than TestU01 for GBs
- Limited polynomial complexity by the estimate phase
- Will find correlations only in close bits
 - ≤1024-bits blocks for practical reasons

BoolTest results


Scenario	CTR			LHW			SAC				RPC					
Fun.\Tests	NI	Di	U01	BT	NI	Di	U01	BT	NI	Di	U01	BT	NI	Di	U01	BT
AES	3	3	3	3	2	3	3	3	2	2	2	2	-	1	1	1
Blowfish	2	2	2	2	2	3	3	3	2	2	3	3	-	1	1	1
DES	4	4	4	5	4	4	4	5	4	4	5	4	1	1	2	4
3-DES	2	2	2	3	2	2	3	3	2	2	2	2	1	1	1	2
Grøstl	2	2	2	2	2	2	2	2	-	-	-	-	-	-	-	-
JH	6	6	6	6	6	6	6	6	6	6	6	5	2	2	2	3
Keccak	2	2	2	3	2	2	2	3	2	2	2	2	1	-	1	1
MD5	9	10	9	11	12	13	20	13	9	11	14	12	3	3	4	6
MD6	8	8	8	8	8	8	8	9	7	7	8	7	5	5	7	5
SHA-1	12	12	13	14	16	16	16	16	11	15	16	14	4	4	5	7
SHA-256	6	6	6	7	12	12	12	13	11	11	12	13	3	4	4	4
TEA	4	4	4	5	3	3	3	4	3	4	3	3	-	2	1	1

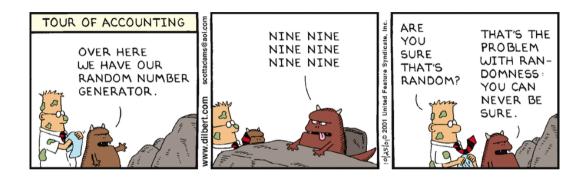
BoolTest heatmap visualisation – AES 10 rounds – "random" reference



Source: Mečko, Vladimír. *Interpretation and speedup of a randomness testing via the boolean functions*. Master thesis. Faculty of Informatics. Masaryk University (2018)

BoolTest heatmap visualisation – AES 3 rounds – structure

BoolTest heatmap visualisation – RC4 – extreme distinguisher



Overall conclusion

- Statistical testing in a comprehensive study
- Security margins for 40 cryptoprimitives using four input strategies
- Novel practical results on Rabbit stream cipher
- Advancements in test interpretation
 - EACirc and BoolTest
 - RTT's visualisation and test interpretation

Project (and involvement) overview

- CryptoStreams generator of cryptographic material
 - Main author initial idea, leading developer
- Randomness Testing Toolkit
 - Tester and user
- EACirc statistical test using evolutionary circuits
 - Project started in 2008
 - Kubíček, Novotný, Švenda, and Martin Ukrop. New results on reduced-round Tiny Encryption Algorithm using genetic programming, IEEE Infocommunications (2016)
 - Master thesis on optimisation methods
- BoolTest generator of cryptographic material
 - Sýs, Klinec, Kubíček, and Švenda. *BoolTest: The fast randomness testing strategy based on boolean functions with application to DES, 3-DES, MD5, MD6 and SHA-256*, forthcoming in Communications in computer and information science, Springer, 2018
 - Experiment design and execution

Questions?