
Computer-Aided Modelling and Reasoning
Project Description (AS 2015)

Andreas Lochbihler and Christoph Sprenger

November 2, 2015

Abstract

In this project, we model and prove the correctness of a constraint-
based security protocol analyzer. The project consists of two parts. In
the first part, we formalize a unification algorithm for general first-order
terms and show its soundness, completeness, and termination. In the
second part, we specialize this theory to protocol messages and formalize
constraint systems and a reduction relation, which we show to be sound
and terminating. Finally, we implement a functional program acting as a
constraint solver and show its soundness and completeness with respect
to the reduction relation.

1 Introduction
This project consists of two parts. In the first part, we model general first-
order term algebras, equations, and equation solving (unification). Unification
is a fundamental primitive at the heart of automated reasoning. For example,
the application of a lemma to a proof goal requires the unification of that goal
with the lemma’s conclusion. Here, we will formalize a unification algorithm for
first-order terms and prove its soundness and completeness.

In the second part, we build upon the first part to formalize a constraint
solver for security protocol analysis. Security protocols are small distributed
programs that use cryptography to achieve a security goal such as entity authen-
tication or session key establishment. Typical examples are SSL/TLS, IPsec,
and Kerberos. Notwithstanding their limited size, they can exhibit subtle de-
sign flaws that give rise to attacks. Formal analysis of security protocols can
find (or exclude) such attacks. We will formalize and implement a constraint
solver for security protocol analysis and prove its correctness.

These notes describe the theory behind the project and define the assign-
ments. The presentation of the theory is intentionally kept in a standard math-
ematical style. We consider it part of the formalization work to translate such
a presentation into suitable structures in the theorem prover Isabelle. The as-
signments in Sections 2.4 and 3.3 provide numerous hints to help you in making

1

the design decisions during the formalization process. Moreover, we have in-
tended to provide sufficient details in our informal proofs to guide the formal
ones. Last but not least, we strongly recommend that you ask us questions in
order to swiftly resolve issues that pop up during the project.

2 Unification of First-order Terms
A first-order signature consists of a set of symbols Σ together with an arity
function ar : Σ → N. Let V be a set of variables. The set of first-order terms
generated by the signature Σ, denoted by TΣ(V), is the least set such that

(i) V is contained in TΣ(V), and

(ii) for all f ∈ Σ, if t1, . . . , tar(f) ∈ TΣ(V) then f(t1, . . . , tar(f)) ∈ TΣ(V).

Function symbols of arity 0 are called constants. The set TΣ(V) is also called
the free term algebra over the signature Σ. We denote by fv(t) the set of (free)
variables in a term t. We also define the size of a term t, denoted by |t|, by
|x| = 0 and |f(t1, . . . , tn)| = 1 + Σni=1|ti|.

By convention, we use x, y, z to denote variables, a, b, c for constants, f, g, h
for function symbols of arity at least one, and t, u, v for arbitrary terms.

2.1 Substitutions
A substitution is a function σ : V → TΣ(V) that maps each variable to a
term. We homomorphically lift substitutions to all terms by defining σ · t, the
application of the substitution σ to the term t by

σ · x = σ(x)

σ · f(t1, . . . , tar(f)) = f(σ · t1, . . . , σ · tar(f))

Given this lifting, we can compose substitutions by defining

(σ ◦s τ)(x) = σ · τ(x).

We can then prove the property (σ ◦s τ)·t = σ·(τ ·t) as well as the associativity of
composition and that the identity substitution id indeed behaves as the identity
on both sides of a composition.

The domain of a substitution σ is the set of variables that do not map to
themselves, i.e., dom(σ) = {x ∈ V | σ(x) 6= x}. The range of a substitution σ
is the image of its domain under σ, i.e., ran(σ) = {σ(x) | x ∈ dom(σ)}. The
variable range of a substitution σ is the set of free variables of terms in its range,
i.e., vran(σ) =

⋃
t∈ran(σ) fv(t).

We write substitutions with a finite domain as σ = [x1 := t1, . . . , xn := tn].
Here, we have dom(σ) = {x1, . . . , xn} and ran(σ) = {t1, . . . , tn} (assuming that
xi 6= ti for all i such that 1 ≤ i ≤ n).

Example 1. [x := y, y := t] · f(x, g(y)) = f(y, g(t)).

2

The following lemma gives a useful upper bound on the free variables of a
term after substitution.

Lemma 1. fv(σ · t) ⊆ (fv(t) \ dom(σ)) ∪ vran(σ).

2.2 The unification problem
A unification problem U over Σ is a finite set of equations over terms in TΣ(V):

U = {(t1, u1), . . . , (tn, un)}

A unifier for U is a substitution σ such that σ · t = σ · u for all (t, u) ∈ U , i.e.,
σ solves the equation system defined by U .

A substitution σ is the most general unifier (mgu) for U if it is a unifier for
U and any other unifier τ for U factors through σ, i.e., τ = ρ ◦s σ for some
substitution ρ. Note that the mgu is unique only up to variable renaming. For
example, [y := x] and [x := y] are both mgus of U = {(x, y)}. They factor
through each other by the renaming [x := y, y := x].

Example 2. Let t = f(x, g(y)) and u = f(h(a, z), z). The unification problem
U = {(t, u)} has the most general unifier σ = [x := h(a, g(y)), z := g(y)]. The
substitution τ = [x := h(a, g(t)), y := t, z := g(t)] for any term t is also a unifier
for U , but a less general one: τ = [y := t] ◦s σ.

2.3 Robinson-style unification algorithm
We give a pseudo-code specification of the unification algorithm (see Algo-
rithm 1). The algorithm takes a unification problem U as argument and either
(i) succeeds and returns a substitution σ or (ii) fails and returns ⊥. If there
are no equations left in U we return the trivial unifier (line 3). Otherwise, we
pick an equation (u, t) ∈ U to process (line 5). We denote by U ′ the set U with
the equation (u, t) removed. We distinguish four cases. We label all cases with
symbolic names that we can later refer to in our proofs.

Var u is a variable x. We further distinguish three subcases.

Unify If x does not appear free in t then we compose the substitution
σ = unify([x := t] · U ′) obtained by the recursive call with [x := t],
i.e., we return σ ◦⊥s [x := t]. Here, σ ◦⊥s τ is the lifted composition
which equals ⊥ if its first arguments is ⊥ and σ ◦s τ otherwise.

Simp In the trivial case where x = t we simply recurse on U ′.

Occur We have x /∈ fv(t) and x 6= t meaning that there is no unifier for
x and t and we return ⊥. This is the so-called occurs-check.

Swap The term t is a variable (but u is not). In this case, we recurse on
U ′ ∪ {(t, u)}, replacing the equation (u, t) by its symmetric version (t, u).

3

Algorithm 1 Unification algorithm in pseudo-code
1: function unify(U) {U is a unification problem}
2: if U = ∅ then
3: id {trivial unifier}
4: else
5: let (u, t) ∈ U and U ′ = U \ {(u, t)} in {pick an equation}
6: if u is a variable x then
7: if x /∈ fv(t) then
8: unify([x := t] · U ′) ◦⊥s [x := t] {Unify: extend unifier}
9: else if x = t then

10: unify(U ′) {Simp: remove trivial equation}
11: else
12: ⊥ {Occurs: x ∈ fv(t) and x 6= t}
13: end if
14: else if t is a variable x then
15: unify(U ′ ∪ {(t, u)}) {Swap: reorient equation}
16: else if u = f(u1, . . . , un) and t = f(t1, . . . , tn) then
17: unify(U ′ ∪ {(ui, ti) | 1 ≤ u ≤ n}) {Fun: decompose terms}
18: else
19: ⊥ {Fail: different function symbols}
20: end if
21: end if
22: end function

Fun The terms u and t have the same top-level function symbol f . Here, we call
unify recursively, replacing the original equation by the (possibly empty)
set of pairs of arguments (ui, ti) of u and t.

Fail The terms u and t are built using different function symbols. Here, there
is no unifier and we therefore return ⊥.

The main results regarding this algorithm are its soundness, completeness,
and termination. Together they state that the algorithm returns a most general
unifier if it exists and fails (i.e., returns ⊥) otherwise. We start by stating and
proving the termination property as this will allow us to prove soundness and
completeness by induction on the definition of unify (computation induction).

Theorem 1 (Termination of unify). Algorithm 1 terminates on all unification
problems U .

Proof. We prove termination by showing that the lexicographic combination of
three measure functions decreases with every recursive call. We consider the
cases Unify, Simp, Swap, and Fun. The other two cases, Occur and Fail,
fail and therefore obviously terminate. We use the following three measures on

4

unification problems U :

χ1(U) = |fv(U)|
χ2(U) = Σ(t,u)∈U |t|
χ3(U) = |U |

The first one, χ1, denotes the number of variables in U . Clearly, the case Unify
decreases χ1 while the other relevant cases do not increase it. The second
measure, χ2, denotes the sum of the sizes of the left-hand-side terms of the
equations in U . It is decreased by the cases Swap and Fun and preserved by
Simp. Finally, rule Simp decreases χ3, the number of equations in U .

χ1(U) χ2(U) χ3(U)
Unify <
Simp ≤ = <
Swap = <
Fun = <

These observations are summarized in the table above and conclude the termi-
nation proof.

Theorem 2 (Soundness of unify). If unify terminates with a substitution σ
on input U then σ is a most general unifier for U .

Proof. By induction on the definition of unify (computation induction). In the
base case, we have U = ∅ and σ = id. Therefore, the statement trivially holds.
The inductive steps correspond to the cases Unify, Simp, Swap, and Fun.

In the following, we detail the case Unify and leave the (easier) remaining
cases to the reader. Let U ′ = U \ {(x, t)} and σ = unify([x := t] · U ′). We
have to show that σ′ = σ ◦⊥s [x := t] is an mgu for U . By the assumption that
unify succeeds on U we have σ 6= ⊥. Hence, we can use ◦s instead of ◦⊥s in the
following. Since x /∈ fv(t), we have

σ′ · x = (σ ◦s [x := t]) · x = σ · t = (σ ◦s [x := t]) · t = σ′ · t.

By induction hypothesis, σ is an mgu for the unification problem [x := t] · U ′.
It follows that σ′ is a unifier of U ′. Hence, σ′ is a unifier of U . It remains to
show that σ′ is the most general unifier.

Suppose τ is a unifier for U . Then τ · x = τ · t and τ · u = τ · w for all
(u,w) ∈ U ′. Since x /∈ fv(t), we have τ ◦s [x := t] = τ . Therefore, τ is also a
unifier for [x := t] · U ′. By induction hypothesis, σ is the mgu for [x := t] · U ′.
Hence, there is a substitution ρ such that τ = ρ ◦s σ. Therefore, we also have
τ ◦s [x := t] = ρ ◦s σ ◦s [x := t]. Finally, since τ ◦s [x := t] = τ , we have
τ = ρ ◦s σ′, establishing that σ′ is the most general unifier of U as required.

We now turn our attention to completeness. We first establish a lemma
stating that unify does not fail if there exists a unifier.

5

Lemma 2. If there is a unifier for U then unify does not fail (i.e., return ⊥).

Proof. By induction on the definition of unify (computation induction). The
statement trivially holds for the base case, since unify(∅) = id.

For the inductive steps, we distinguish the six cases Unify, Simp, Occurs,
Swap, Fun, and Fail. In each case, we have to show that the result is not ⊥
assuming there is a unifier τ for U . Here, we only treat the cases Unify and
Occurs, and leave the remaining cases to the reader.

For Unify, suppose τ unifies U . Hence, τ · x = τ · t. Since x /∈ fv(t) we
have τ ◦s [x := t] = τ . Hence, τ ◦s [x := t] unifies U ′ and thus τ unifies
[x := t] ·U ′. By induction hypothesis, we obtain unify([x := t] ·U ′) 6= ⊥. Thus,
unify([x := t] · U ′) ◦⊥s [x := t] = unify(U) 6= ⊥ as required.

Next, we show that the case Occurs is not possible. Suppose that x 6= t
and τ unifies U , i.e., τ ·x = τ · t in particular. As x ∈ fv(t), we have that τ ·x is
a subterm of τ · t, i.e., τ · t = f1(. . . , f2(. . . fn(τ · x) . . .), . . .) for some n ≥ 0 and
f1, . . . , fn. Consider the number of function symbols in τ · t and τ · x. Clearly,
the two numbers can be only equal if n = 0, i.e., x = t, which contradicts the
assumption x 6= t.

Theorem 3 (Completeness of unify). If there is a unifier for U then unify(U)
returns a unifier for U .

Proof. Follows directly from Lemma 2 and soundness (Theorem 2).

We summarize some additional properties of the unification algorithm unify
in the following lemma, which we will need later. Note that property (iv) of
this lemma is equivalent to stating that σ is idempotent, i.e., σ = σ ◦s σ.

Lemma 3. Suppose unify(U) = σ. Then we have (i) fv(σ · U) ⊆ fv(U), (ii)
dom(σ) ⊆ fv(U), (iii) vran(σ) ⊆ fv(U), and (iv) dom(σ) ∩ vran(σ) = ∅.

Proof. By computation induction on the definition of unify. We first prove
points (i)-(iii) together and then point (iv) separately below.

For (i)-(iii), we only consider the most interesting case where (x, t) ∈ U for
a variable x ∈ V and leave the other cases to the reader. Let U ′ = U \ {(x, t)}.
We consider the three subcases from lines 7-13 of Algorithm 1.

• Case Unify, i.e., x /∈ fv(t). The induction hypothesis for this case states
that the lemma holds for [x := t] · U ′ and any σ′. From the assumption
that unify(U) = σ we obtain a σ′ such that unify([x := t] · U) = σ′

and σ = σ′ ◦s [x := t]. We also have fv([x := t] · U ′) ⊆ fv(t) ∪ fv(U ′).
Therefore, we derive from the induction hypothesis that

fv(σ′ · ([x := t] · U ′)) ⊆ fv(t) ∪ fv(U ′) (1)
dom(σ′) ⊆ fv(t) ∪ fv(U ′) (2)
vran(σ′) ⊆ fv(t) ∪ fv(U ′) (3)

6

For (i), we have to show that fv(σ · U) ⊆ fv(U). First, we observe that
fv(U) = fv(t) ∪ fv(U ′) ∪ {x}. We have

fv(σ · U) = fv((σ′ ◦s [x := t]) · U)

= fv(σ′ · ([x := t] · ({(x, t)} ∪ U ′))
= fv(σ′ · t) ∪ fv(σ′ · ([x := t]U ′))

Then point (i) follows from (1) and (3) by applying Lemma 1. Points (ii)
and (iii) follow from (2) and (3) and the facts that dom(σ) ⊆ dom(σ′)∪{x}
and vran(σ) ⊆ vran(σ′) ∪ fv(t).

• Case Simp, i.e., x = t. The induction hypothesis for this case states that
the lemma holds for U ′ and any σ′. Since unify(U) = unify(U ′), we can
immediately apply the induction hypothesis for σ′ = σ and derive that
(i)-(iii) hold for U ′ and σ. We also have that fv(U) = fv(U ′)∪{x}. Points
(ii) and (iii) then follow directly from the induction hypothesis. For point
(i), we observe that fv(σ · U) = fv(σ(x)) ∪ fv(U ′). From Lemma 1, we
derive that fv(σ(x)) ⊆ vran(σ). Hence, fv(σ · U) ⊆ fv(U) as required for
point (i).

• Case Occurs, i.e., x ∈ fv(t) and x 6= t. This case holds by contradiction
with the assumption that unify(U) = σ.

This establishes points (i)-(iii) of the lemma.
We proceed with point (iv), which we also prove by computation induction.

We only present the case Unify, all the other cases either hold trivially, by the
induction hypothesis, or by contradictory assumptions. So suppose x /∈ fv(t).
By the assumption unify(U) = σ, there is a σ′ such that unify([x := t]·U) = σ′

and σ = σ′ ◦s [x := t]. Thus, by the induction hypothesis, we have dom(σ′) ∩
vran(σ′) = ∅. Applying point (iii) to unify([x := t] · U) = σ′, we get that
vran(σ′) ⊆ fv([x := t] ·U). As x /∈ fv([x := t] ·U) (otherwise x would be free in
t), we obtain that x /∈ vran(σ′).

Now, suppose that z ∈ dom(σ) and z ∈ vran(σ) for some z. We show
that this leads to a contradiction. As dom(σ) ⊆ dom(σ′) ∪ dom([x := t]) and
z ∈ dom(σ), we know that z ∈ dom(σ′) ∪ {x}. Similarly, z ∈ vran(σ′) ∪ fv(t)
as z ∈ vran(σ) and vran(σ) ⊆ vran(σ′) ∪ vran([x := t]). Hence, z ∈ dom(σ′),
because dom(σ′)∩vran(σ′) = ∅ and x /∈ fv(t) and x /∈ vran(σ′). Thus, it suffices
to show that z ∈ vran(σ′), because this contradicts the induction hypothesis
dom(σ′) ∩ vran(σ′) = ∅. By the definition of vran(σ), there must be some
y ∈ dom(σ) such that z ∈ fv(σ · y). We distinguish two cases: whether y = x
or not. If y = x, then σ · y = σ′ · t, so z ∈ fv(σ′ · t). By Lemma 1, z ∈
(fv(t) \ dom(σ′)) ∪ vran(σ′). Therefore, z ∈ vran(σ′) as z ∈ dom(σ′). If y 6= x,
then σ · y = σ′ · y and y ∈ dom(σ′), so z ∈ vran(σ′).

2.4 Assignments
The assignments below guide you through the stepwise formalization of the
results about substitution and unification from this section. We only list the

7

main lemmas below. You will have to discover and prove additional ones.
Assignments marked with (F) can be skipped in a first go by just stating the

theorems and skipping the proofs with sorry . Replace them later with proper
proofs.

Assignment 1 (First-order term algebras and substitution). Define a datatype
for a general first-order term algebra parametrized by type variables ’ f for the
signature and ’v for the type of variables as follows.

datatype_new (’f, ’v) "term " = Var ’v | Fun ’f "(’f , ’v) term list "

The type term does not ensure the correct arity for function symbols (Assign-
ment 4 below will deal with this). However, the above development trivially
generalises to terms without arity restrictions on function symbols.

Note that there is a separate constructor Var for variables, because syntactic
conventions such as x always denoting to a variable cannot be expressed in
Isabelle. Consequently, your formalisation has to adapt the above presentation
whenever variables are involved. For example, the identity substitution is not
id, but Var.

(a) Define a recursive function fv :: "(’f , ’v) term ⇒ ’v set " that computes the
set of variables in a term.

(b) Define the type synonym (’ f ,’ v) subst = ’v ⇒ (’ f , ’v) term for substitu-
tions. Then define the following two functions on substitutions: sapply which
lifts substitutions to functions on all terms and scomp which composes two
substitutions:

sapply :: "(’f ,’ v) subst ⇒ (’ f ,’ v) term ⇒ (’ f ,’ v) term " (infixr "· " 67)
scomp :: "(’f ,’ v) subst ⇒ (’ f ,’ v) subst ⇒ (’ f ,’ v) subst " (infixl "◦s " 75)

The annotations after the type declare infix function symbols for these func-
tions, their associativity (left or right), and their precedence. As a result,
we use the same notation in the in our Isabelle theories as in the preceding
text, i.e., we can write σ·t and σ◦s τ .

(c) Prove the following lemmata about substitution.

lemma fv_sapply: "fv (σ · t) = (
⋃
x ∈ fv t. fv (σ x)) "

lemma sapply_cong:
assumes "

∧
x. x ∈ fv t =⇒ σ x = τ x "

shows "σ · t = τ · t "

lemma scomp_sapply: "(σ ◦s τ) x = σ · (τ x) "
lemma sapply_scomp_distrib: "(σ ◦s τ) · t = σ · (τ · t) "

lemma scomp_assoc: "(σ ◦s τ) ◦s %= σ◦s (τ ◦s %) "
lemma scomp_Var [simp]: "σ ◦s Var = σ "
lemma Var_scomp [simp]: "Var ◦s σ= σ "

8

(d) Define the domain and variable range of substitutions.1

sdom :: "(’f , ’v) subst ⇒ ’v set "
svran :: "(’f , ’v) subst ⇒ ’v set "

Prove the following lemmata:2

lemma sdom_Var [simp]: "sdom Var = {} "
lemma svran_Var [simp]: "svran Var = {} "

lemma sdom_single_non_trivial [simp]:
"t 6= Var x =⇒ sdom (Var(x:=t)) = {x} "

lemma svran_single_non_trivial [simp]:
"t 6= Var x =⇒ svran (Var(x:=t)) = fv t "

lemma fv_sapply_sdom_svran:
"x ∈ fv (σ · t) =⇒ x ∈ (fv t − sdom σ) ∪ svran σ "

lemma sdom_scomp: "sdom (σ ◦s τ) ⊆ sdom σ∪ sdom τ "
lemma svran_scomp: "svran (σ ◦s τ) ⊆ svran σ∪ svran τ "

Assignment 2 (Unification problems). Define a type synonym for equations
(as pairs of terms) and equation systems (as lists of equations) and lift the
definitions of the functions fv and sapply (substitution on terms) to equations
and equation systems.

(a) State and prove versions of lemmas fv_sapply and sapply_scomp_distrib for
equations and equation systems.

(b) Define the predicates unifies and unifiess to express that a given substitu-
tion is a unifier for an equation (system). Moreover, define a function is_mgu
asserting that a given substitution is the mgu for an equation system.

(c) Prove the following lemma and a version of it for equation systems.

lemma unifies_sapply_eq:
"unifies σ (sapply_eq τ eq) ←→unifies (σ ◦s τ) eq "

Assignment 3 (Unification algorithm and its properties).

(a) Define the function unify from Algorithm 1 as a recursive function of the
following form:

function (sequential) unify :: "(’f , ’v) equations ⇒ (’ f , ’v) subst option "

Use pattern matching with nested patterns and pattern completeness.
(F) Establish termination using the three measure functions χ1, χ2, and
χ3 from the proof of Theorem 1.

1We are using sdom and svran here to distinguish these from the functions dom and ran
on maps that are already defined in Isabelle.

2The notation f(x := y) changes the function f such that x is mapped to y. Use the query
panel to find theorems about the underlying function fun_upd.

9

(b) Formalize and prove the soundness theorem (Theorem 2).

Hint: Split the proof into two parts and prove them separately by compu-
tational induction.

(i) If unify returns a substitution, it is a unifier.

(ii) If unify returns a substitution σ and there is another unifier τ , then
τ = ρ ◦s σ for some ρ.

(c) (F) Formalize and prove the completeness theorem (Theorem 3).

(d) (F) Formalize and prove the properties stated in Lemma 3.

Assignment 4 (Arities and well-formed terms).

(a) Extend your theory with arities by defining a well-formedness predicate
expressing that a term respects a given arity function. Lift this function
to substitutions as well as to equations and equation systems (not shown
below).

wf_term :: "(’f ⇒ nat) ⇒ (’ f , ’v) term ⇒ bool "
wf_subst :: "(’f ⇒ nat) ⇒ (’ f , ’v) subst ⇒ bool "

(b) Prove the following lemmas.

lemma wf_term_sapply:
"J wf_term arity t; wf_subst arity σ K =⇒ wf_term arity (σ · t) "

lemma wf_subst_scomp:
"J wf_subst arity σ; wf_subst arity τ K =⇒ wf_subst arity (σ ◦s τ) "

lemma wf_subst_unify:
"J unify eqs = Some σ; wf_eqs arity eqs K =⇒ wf_subst arity σ "

10

3 Symbolic Verification of Security Protocols
A typical example of a security protocol is the Needham-Schröder Public-key
(NSPK) protocol [3], which is informally specified as follows:

M1. A→ B : {A,NA}B
M2. B → A : {NA,NB}A
M3. A→ B : {NB}B

This protocol’s goal is to achieve mutual entity authentication between the
initiator A and the responder B. Moreover, the nonces NA and NB should
remain secret (e.g., one could use them to derive a session key). The protocol
uses public-key encryption, where {M}A denotes the encryption of message M
with agent A’s public-key.3 The initiator A starts the protocols by sending
her nonce NA encrypted with the responder B’s public key (M1). B replies
with the encryption for A of this nonce and his own nonce NB (M2). Finally,
the initiator sends nonce NB encrypted for B (M3). The idea is that each
role’s nonce can only be decrypted by the other role and getting it back should
therefore authenticate the peers to each other. Moreover, the use of encryption
should keep the nonces secret.

In 1996, Gawin Lowe discovered a now well-known man-in-the-middle attack
on this protocol [1] where A talks to the intruder, but B believes to be talking
to A whereas in reality he is talking to the intruder. Our goal is to develop a
security protocol analyzer that can discover such attacks. We work in a symbolic
(Dolev-Yao) security protocol model where we assume that cryptography is
perfect, i.e., decryption requires the knowledge of the correct decyption key,
and that the intruder controls the network, i.e., he can observe all messages,
block messages, and construct and insert messages that he can build from his
knowledge.

3.1 Security protocol model
Our security protocol model consists of a term algebra representing protocol
messages, an attacker model, and an operational semantics. We define the
latter only informally as we do not need it in our development.

Messages and attacker model Let C be a set of constants. The set of
protocol messages that we will use is the set TΣ(V) of first-order terms generated
by the following signature (using some syntactic sugar for function symbols and
indicating each symbol’s arity by dots):

Σ = C ∪ {h(·), 〈·, ·〉, {| · |}·, {·}·, [·]·}

Recall that constants are function symbols of arity 0. We use constants to
represent agent names and nonces. We assume a special agent name ι ∈ C

3We in fact identify the agent’s identity with his public key here.

11

Axiom rule
u ∈ T
T ` u Ax

Composition rule

T ` t1 · · · T ` tar(f)

T ` f(t1, . . . , tar(f))
Comp (f ∈ Σc)

Analysis rules

T ` 〈t1, t2〉
T ` ti

Proji
T ` {|t|}k T ` k

T ` t Sdec
T ` {t}ι
T ` t Adec

Figure 1: Intruder deduction rules

representing the intruder. The term h(t) represents the hash of t and the terms
{|t|}k, {t}k, and [t]k respectively denote the symmetric encryption, public-key
encryption, and the signature of term t with key k.

The capabilities of the intruder to derive a message t from a set T of observed
messages is expressed by a judgement of the form T ` t. The set of derivable
judgements is inductively defined by the rules in Figure 1. The axiom rule Ax
states that the intruder can derive any observed message. The composition
rule Comp expresses the intruder’s capability to construct new messages from
derivable ones. We define Σc = {h(·), 〈·, ·〉, {|·|}·, {·}·, [·]ι}. Note that the intruder
can only sign messages with his own name (for f = [·]ι). According to the
analysis rules, the intruder can project pairs to their components (rule Pair),
decrypt symmetric encryptions for which he knows the key (rule Sdec), and
decrypt asymmetric encryptions with the intruder’s public key (rule Adec). Note
that we model signatures without message recovery, which is reflected in the
absence of an analysis rule for signatures.

Lemma 4. Intruder deduction satisfies the following properties:

(i) (Cut) If T, t ` u and T ` t then T ` u.

(ii) (Weakening) If T ` t and T ⊆ T ′ then T ′ ` t.

Proof. Both properties are established by rule induction.

Role-based protocol specifications We now sketch the operational seman-
tics of security protocols. The Alice&Bob notation used for the example above
is rather informal. For our purposes, it is useful to take a role-based view of
security protocols, where each role is specified by a small program consisting of
send and receive events.

12

Example 3. The roles of the NSPK protocol are specified as follows:

NSPK (A) = send({A,na}B) · recv({na,NB}A) · send({NB}B)

NSPK (B) = recv({A,NA}B) · send({NA, nb}A) · recv({nb}B)

We henceforth adopt the convention to write variables in upper case and con-
stants in lower case letters. The nonce na is generated by A and sent to B,
hence it is a constant in role A that is received into the variable NA of role B.
Similarly, nonce nb is generated by B and received into variable NB by A. ♠

We require a minimal well-formedness condition for protocol roles, namely,
that all variables except agent variables (such as A and B) must first occur in
a receive event.

Operational semantics Instead of giving operational semantics rules defin-
ing the transitions of the send and receive events, we describe the behavior of
these events informally. To execute a protocol, we instantiate protocol roles
into threads by subscripting all their events, variables, and constants with the
thread identifier and by instantiating the agent variables with agent names (i.e.,
constants).

The state (IK , th) of the protocol consists of the current intruder knowledge
IK and a set of threads, the thread pool th. Each initial state represents the
intruder’s initial knowledge IK 0 consisting of ground terms and a scenario with
an arbitrary but fixed number of threads (instantiated roles).

A state transition corresponds to the execution of the first event ev of some
thread i in the pool and is labeled by evi. A send event send(t) adds the term
t to the intruder knowledge IK and removes the event from the thread. The
transition is labeled by sendi(t). The execution of a receive event recv(t) requires
that the term tσ for some substitution σ with dom(σ) = fv(t) is deducible from
the current intruder knowledge IK , i.e., IK ` σ · t. As a result, the receive event
is removed from the thread and the substitution σ is applied to the remaining
events of the thread. The transition is labeled by recvi(σ · t). The sequence of
transition labels generated by a series of execution steps is called a trace.

Note that the well-formedness condition for protocol roles ensures that the
trace and the intruder knowledge only contain ground terms.

Example 4 (NSPK threads). Consider the initiator and responder threads th0

and th1 which are instantiations of the roles in Example 3 with respective agent
assignments ρ0 = [A0 := a,B0 := ι] and ρ1 = [A1 := a,B1 := b].

th0 = send0({a, na0}ι) · recv0({na0,NB0}a) · send0({NB0}ι)
th1 = recv1({a,NA1}b) · send1({NA1, nb1}a) · recv1({nb1}b)

Suppose the intruder’s initial knowledge is IK 0 = {a, b, ι}. The send event in
thread th0 adds the message {a, na0}ι to the intruder knowledge IK . Since the
intruder know ι and b, he can clearly derive IK ` [NA1 := na0] · {a,NA1}b
and therefore the receive event in thread th1 can be executed. As a result, the

13

receive event is removed from thread th1 and the rest is instantiated with the
substitution [NA1 := na0] resulting in the updated th′1 = send({na0, nb1}a) ·
recv({nb1}b). The execution of these two events results in the following trace:
send({a, na0}ι) · recv({a, na0}b). ♠

Security properties The main security properties for security protocols are
secrecy and authentication. Here, we only consider secrecy.

We say that a thread honestly instantiates a role R if it instantiates role R
and no agent variable is assigned to the intruder ι. A simple way to check
whether a term t is secret in role R is to extend role R with a final receive event
recv(t). The term t is secret in role R if no thread honestly instantiating role R
can ever reach the receive event recv(t). The final receive event is executable if
and only if the intruder can derive the (instantiated) term t from its knowledge
IK (cf. semantics of receive events). Therefore, an attack on the secrecy of a
term t in role R consists of a trace leading to a state (th, IK) where there is an
honestly instantiated thread i in th that has terminated its role.

Example 5 (NSPK attack). Gawin Lowe discovered the following well-known
man-in-the-middle attack on the NSPK protocol [1]:

M10. a→ ι : {a, na}ι
M11. ι(a)→ b : {a, na}b
M21. b→ ι(a) : {na, nb}a
M20. ι(a)→ a : {na, nb}a
M30. a→ ι : {nb}ι
M31. ι(a)→ b : {nb}b

There are two protocol threads in this attack. Thread 0 is run by agent a in the
initiator role A with the intruder ι. Thread 1 is an instance of responder role
B and is run by b with a. The secrecy and authentication properties are only
required to hold for threads that communicate with honest peers. Hence, a can-
not expect any security guarantees (technically, her guarantees hold trivially).
Agent b’s guarantees clearly fail. He believes to be talking to the honest agent a
whereas in reality he is talking to the intruder who impersonates a, indicated by
the notation ι(a). Moreover, the intruder can extract both nonces, na and nb,
from the messages M11 and M31. In particular, a acts as a decryption oracle
for the intruder when she extracts nb from message M21.

The scenario of Lowe’s attack corresponds to the interleaved execution of
the threads th0 and th1 from Example 4. We express the secrecy of the nonces
NA and nb for role B by adding the event recv(〈NA, nb〉) to role B, resulting in
the extension of thread th1 with the event recv(〈NA1, nb1〉). Assuming IK 0 =
{a, b, ι}, the following trace represents Lowe’s attack on the NSPK protocol.

send0({a, na0}ι) · recv1({a, na0}b) · send1({na0, nb1}a) · recv0({na0, nb1}a)·
send0({nb1}ι) · recv1({nb1}b) · recv1(〈na0, nb1〉)

To check that this is indeed a trace of the augmented NSPK protocol, note
that the intruder knowledge at the end of the trace is IK 0 augmented with the

14

messages from the send events, i.e.,

IK = IK 0 ∪ { {a, na1}ι, {na0, nb1}a, {nb1}i }

Clearly, the intruder can derive the pair of nonces 〈na0, nb1〉 from IK . ♠

3.2 Constraint-based protocol analysis
The problem of verifying secrecy properties of security protocols is undecidable
without a bound on the number of protocol threads or on the size of messages the
intruder may generate. For a bounded number of threads the problem becomes
decidable [4]. However, even in this case the transition systems generated by
the operational semantics generally have infinitely many states. The problem
stems from the fact that in each receive event the intruder can potentially send
infinitely many messages (their size is unbounded). This leads to transition
systems that are generally infinitely branching although only of finite depth. As
a concrete example, in the NSPK protocol, an agent b in role B would accept
the message {a, hk(ι)}b for any k ∈ N as the first message and interpret hk(ι) as
a’s nonce.

3.2.1 Constraint systems

To address this problem and obtain a practical decision procedure, Millen and
Shmatikov [2] have proposed an analysis method based on constraint solving,
which subsequently has been refined and extended many ways. Their method
reduces the branching factor to at most one successor for each thread. The basic
idea is to consider symbolic protocol executions where the threads’ variables
remain uninstantiated. For each receive event recv(t) on such a trace, we record
a derivability constraint IK ` t where IK consists of the (symbolic) messages
appearing in the preceding send events.

The desired relation between symbolic and ground execution traces is as
follows. Given a symbolic trace tr, the resulting constraint system cs has a
solution σ (ground substitution) such that the instance σ · IK ` σ · t of each
constraint IK ` t in cs becomes intruder-deducible (Figure 1) if and only if the
trace σ · tr corresponds to a ground execution of the protocol.

Example 6. The symbolic trace corresponding to Lowe’s attack on the NSPK
protocol and its corresponding constraint system are as follows.

IK 0 ` 〈A0, B0, A1, B1〉
send0({A0, na0}B0

)· IK 1 = IK 0, {A0, na0}B0

recv1({A1,NA1}B1
)· IK 1 ` {A1,NA1}B1

send1({NA1, nb1}A1
)· IK 2 = IK 1, {NA1, nb1}A1

recv0({na0,NB0}A0)· IK 2 ` {na0,NB0, }A0

send0({NB0}B0)· IK 3 = IK 2, {NB0}B0

recv1({nb1}B1
)· IK 3 ` {nb1}B1

recv1(〈NA1, nb1〉) IK 3 ` 〈NA1, nb1〉

15

The symbolic trace interleaves a thread 0 instantiating role A and a thread 1
instantiating role B. Note that we have not instantiated the agent variables
here. In order to check the secrecy of NA1 and nb1 we will have to instantiate
A1 and B1 with honest agents (cf. definition of secrecy).

The constraint system is composed of five constraints. The first constraint
encodes the fact that the agent names instantiating the agent variables A0, B0,
A1, and B1 are known to the intruder. The remaining constraints stem from the
trace events. There is one constraint for each receive event. The left-hand side
of each constraint consists of the set of terms composed of the initial intruder
knowledge augmented with the terms from the send events preceding the given
receive event. The term from the receive event appears on the right-hand side.
The final constraint checks the violation of the secrecy of nonces NA1 and nb1.
Lowe’s attack corresponds to the substitution

σ = [A0 := a,B0 := ι, A1 := a,B1 := b,NB0 := nb1,NA1 := na0]

which instantiates the symbolic trace above to the attack trace of Example 5
and solves the constraint system above, i.e., all constraints instantiated with σ
can be derived using the intruder deduction rules from Figure 1. ♠

We now formally define constraint systems and their semantics. We adopt
a slightly refined constraint format, which will help us with the proof that the
constraint solving process terminates.

Definition 1. An intruder deduction constraint M |AB t consists of two finite
sets of terms M and A and a term t. A constraint system cs is a finite set of
constraints.

Notation. For the sake of readability, we introduce a lightweight notation for
certain set operations. We will often write a comma for union and drop the
curly brackets around singleton sets. For example, M, t |A,B B u denotes the
constraint c = M ∪ {t} |A ∪ B B u and similarly for constraints and constraint
systems.

A solution of a constraint system cs is a substitutions that makes all con-
straints in cs intruder-derivable. Note that this ignores the separation ofM and
A, which only plays a role in the constraint solving process.

Definition 2. The solution set of a constraint system cs is defined by

sol(cs) = {σ | ∀(M |AB t) ∈ cs. σ · (M,A) ` σ · t}.

A constraint system is satisfiable if sol(cs) 6= ∅, i.e., there exists a solution, and
unsatisfiable otherwise.

The following lemmas record properties of the solution sets of constraint
systems regarding composition and substitution.

Lemma 5. sol(cs1, cs2) = sol(cs1) ∩ sol(cs2).

Lemma 6. If τ ∈ sol(σ · cs) then τ ◦s σ ∈ sol(cs).

In the remainder of this section, we present constraint reduction rules to
solve constraint systems and their desired properties.

16

Unification rule

Unif` M |AB t 1
σ ∅ if t /∈ V, u ∈M ∪A, and σ = unify(t, u)

Composition rule (f ∈ Σc)

Comp` M |AB f(t1, . . . , tar(f)) 1
id {M |AB t1, . . . , M |AB tar(f)}

Analysis rules

Proj` M, 〈u, v〉 |AB t 1
id {M,u, v | 〈u, v〉, AB t}

Sdec` M, {|u|}k |AB t 1
id {M,u |{|u|}k, AB t, M |{|u|}k, AB k}

Adec` M, {u}ι |AB t 1
id {M,u |{u}ι, AB t}

Ksub` M, {u}x |AB t 1
[x:=ι] {[x := ι] · (M, {u}x |AB t)}

Figure 2: Constraint reduction rules

3.2.2 Constraint solving

Figure 2 defines constraint reduction relations of the form 1
σ (indexed by

substitutions) between a constraint and a constraint system. The intention is
that the constraint on the left is replaced by the (possibly empty) constraint
system on the right and the substitution σ is applied to the whole constraint
system. This is expressed in the following rule, which extends each relation 1

σ

to the relation σ on constraint systems:

c 1
σ cs

c, cs′ σ cs, σ · cs′
Context

We now briefly describe each constraint reduction rule and its relation to the
intruder deduction rules of Figure 1. The unification rule Unif` unifies a term u
on the left-hand side of a constraint with the term t on the right hand side, which
must not be a variable (we motivate this condition below). The corresponding
mgu σ labels the reduction step (and is applied to the other constraints of the
system, see rule Context). This rule is a generalization of the axiom rule Ax.
The composition rule Comp` removes the top-level symbol f ∈ Σc of the right-
hand side term of a constraint and replaces the constraint by one constraint for
each argument term ti of f . This rule directly reflects the intruder deduction
rule Comp.

The analysis rules Proj`, Sdec`, and Adec` decompose a pair or a ciphertext
t in the set M on the left-hand side of a constraint M | A B t. As a result,
the analyzed term t is moved to the set A (to avoid repeated analysis of the
same term) and the term’s content (pair components or plaintext) is added to
M . The decryption rule Sdec` generates an additional constraint requiring the
derivation of the appropriate decryption key. The analysis rule Adec` decrypts

17

an asymmetric encryption with the intruder’s public key ι. The rule Ksub`

prepares the application of rule Adec` in the case where the public-key is a
variable x. This rule instantiates x with ι in the constraint (and the surrounding
constraint system, see rule Context). While the analysis rules Proj`, Sdec`,
and Adec` are justified by the corresponding intruder deduction rules Proji,
Sdec, Adec, they do not directly correspond to them, since they operate on the
left-hand side of constraints (see Section 3.2.3).

Finding solutions The relations σ describe a single reduction step between
constraint systems. We define the reflexive and transitive closure ∗· of these
relations as the smallest relation satisfying the following properties:

(i) cs ∗id cs, and

(ii) cs ∗τ◦sσ cs
′ whenever cs σ cs

′′ and cs′′ ∗τ cs′ for some cs′′.

We start the constraint solving process in an initial constraint system cs
that we have obtained from a symbolic trace of the protocol under study. We
repeatedly apply the reduction rules to obtain reduction sequences cs ∗σ cs′
for some substitution σ and constraint system cs′. We can stop the reduction
at so-called simple constraint systems cs′ where all constraints have variables
on their right-hand sides, i.e., they are of the form

M |ABX.

The intuition is that the intruder can replace these variables with any term
that he can construct. Hence, under the realistic assumption that the intruder’s
initial knowledge is non-empty, every simple constraint system has a solution.
The fact that we can stop the reduction at simple constraint systems exactly
avoids the infinite branching that would arise by instantiating the variables as
in the ground operational semantics.

We now define the set of substitutions obtained by reduction of a constraint
system cs to simple ones.

Definition 3. We define the set of reducts of a constraint system cs by

red(cs) = {τ ◦s σ | ∃cs′. cs ∗σ cs′ ∧ cs′ is simple ∧ τ ∈ sol(cs′)}.

Overview of properties We now turn to the three main properties of con-
straint reduction: soundness, completeness, and termination. Soundness means
that all substitutions resulting from constraint reduction are indeed solutions,
i.e., red(cs) ⊆ sol(cs). Completeness means that the reduction does not miss
any solution, i.e., sol(cs) ⊆ red(cs). As a consequence, we can safely discard
any irreducible non-simple constraint system cs′ obtained from cs. Termination
means that there is no infinite reduction sequence, i.e., that the relation is
well-founded. In the following, we discuss soundness and termination in detail,
while we only state the completeness result without presenting its proof.

18

3.2.3 Soundness

The proof of the soundness result is based on the following lemma expressing
one-step reduction soundness.

Lemma 7. If c 1
σ cs and τ ∈ sol(cs) then τ ◦s σ ∈ sol({c}).

Proof. By case analysis on the reduction rule R of Figure 2.

• R = Unif`. We have c = M |AB t, cs = ∅, u ∈M ∪A, and σ = unify(t, u).
Then σ · t = σ · u and therefore we have

τ · σ · (M,A) ` τ · σ · t.

for all τ by the axiom rule Ax. This shows that τ ◦s σ ∈ sol({c}).

• R = Sdec`. In this case, we have c = M, {|u|}k | A B t, σ = id, and
cs = {M,u | {|u|}k, A B t, M | {|u|}k, A B k}. By the second hypothesis,
τ ∈ sol(cs), we have

τ · (M,A, u, {|u|}k) ` τ · t (4)
τ · (M,A, {|u|}k) ` τ · k (5)

Now, we derive

τ · (M,A, {|u|}k) ` τ · {|u|}k
Ax

τ · (M,A, {|u|}k) ` τ · k
(by (5))

τ · (M,A, {|u|}k) ` τ · u Sdec

From the conclusion of this derivation and (4) we derive τ ·(M,A, {|u|}k) `
τ · t using Lemma 4(i). Hence, τ ◦s σ ∈ sol({c}) as required.

We leave the remaining cases to the reader.

The following two lemmas lift the previous one to the relations σ and ∗σ.

Lemma 8. If cs σ cs
′ and τ ∈ sol(cs′) then τ ◦s σ ∈ sol(cs).

Proof. From cs σ cs
′ we know from rule Context that cs = c, cs2, c 1

σ cs1,
and cs′ = cs1, σ · cs2. From the assumption τ ∈ sol(cs1, σ · cs2), we derive τ ∈
sol(cs1) and τ ∈ sol(σ · cs2) by Lemma 5. Therefore, we have τ ◦s σ ∈ sol({c})
by Lemma 7 and τ ◦s σ ∈ sol(cs2) by Lemma 6. A final application of Lemma 5
yields the desired result.

Lemma 9. If cs ∗σ cs′, cs′ is simple, and τ ∈ sol(cs′) then τ ◦s σ ∈ sol(cs).

Proof. By rule induction on the definition of ∗. The base case is trivial since
cs = cs′ and σ = id. In the inductive case, suppose cs ρ cs

′, cs′ ∗ρ′ cs
′′, cs′′

is simple, and τ ∈ sol(cs′′). From the induction hypothesis, we get τ ◦s ρ′ ∈
sol(cs′). By Lemma 8, it follows that τ ◦s (ρ′ ◦s ρ) ∈ sol(cs′) as required.

Now soundness becomes a corollary of the previous lemma.

Theorem 4. (Soundness) Constraint solving is sound, i.e., red(cs) ⊆ sol(cs).

Proof. By the definition of red(cs) and Lemma 9.

19

3.2.4 Termination

We establish the termination of the constraint reduction process by showing that
the constraint reduction relation =

⋃
σ σ is well-founded. It is sufficient to

show that whenever cs σ cs
′ then cs′ @ cs for a well-founded relation @ on

constraint systems. We define the relation @ as the lexicographic composition of
two measure functions η1 and η2 on constraint systems. The measure function
η2 is constructed from two auxiliary functions on terms, θ and χ:

θ(f(t1, . . . , tn)) = θ(t1) + · · ·+ θ(tn) + 1 for f ∈ Σc
θ(t) = 1 for all other terms t

χ(h(t)) = χ(t) + 1
χ(〈t, u〉) = χ(t) · χ(u) + 1
χ({|t|}k) = χ(t) + θ(k) + 1
χ({t}k) = χ(t) + 1
χ([t]k) = χ(t) + 1
χ(t) = 1 for all other terms t

We lift χ to finite sets of terms by defining χ(M) = Πu∈M χ(u) and combine χ
and θ into a “weight” function on constraints:

w(M |AB t) = χ(M) · θ(t)

Note that the already analyzed terms in A do not contribute to the weight of a
constraint. This point is essential for the termination proof. We define the two
measure functions η1 and η2 on constraint systems cs as follows.

η1(cs) = |fv(cs)|
η2(cs) = Σc∈csw(c)

Reductions with non-trivial substitutions (using rules Unif` or Ksub`) de-
crease η1, while those with trivial substitutions decrease η2 without increasing
η1. This is summarized in the following table.

η1(cs) η2(cs)
σ 6= id <
σ = id ≤ <

The following three lemmas suffice to prove this.

Lemma 10. If c 1
σ cs then fv(cs, σ · cs′) ⊆ fv(c, cs′).

Proof. By case analysis on the rule R used to justify c 1
σ cs. The conclusion

holds trivially for all rules except Unif` and Ksub`, since these clearly do not
introduce fresh variables. We consider here the case R = Unif` where we have
cs = ∅. From Lemma 1, we derive fv(σ·cs′) ⊆ (fv(cs′)\dom(σ))∪vran(σ). From
Lemma 3(iii), we know that vran(σ) ⊆ fv(c). Hence, fv(c, cs′) ⊆ fv(cs, σ · cs)
as required.

20

Lemma 11. If c 1
σ cs and σ 6= id then fv(cs, σ · cs′) 6= fv(c, cs′).

Proof. By case analysis on the rule R used to justify c 1
σ cs. Only the rules

Unif` and Ksub` can produce a non-trivial substitution σ.
We consider here the case R = Unif` where we have cs = ∅. We pick

an arbitrary x ∈ dom(σ). By Lemma 3(ii), we have dom(σ) ⊆ fv(c), hence
x ∈ fv(c, cs′). From Lemma 1, we derive fv(σ ·cs′) ⊆ (fv(cs′)\dom(σ))∪vran(σ)
and from Lemma 3(iv), we have dom(σ)∩vran(σ) = ∅. Hence, x /∈ fv(cs, σ ·cs′),
which establishes the required inequality.

Lemma 12. If c 1
id cs then η2(cs) < w(c).

Proof. By case analysis on the rule R used to justify c 1
σ cs. The verification

of the conclusion requires some calculation. Note that w(c) = η2({c}) and
w(c) > 0 since it is a product of positive factors.

• R = Unif`. This is easy, since η2(∅) = 0 < w(c).

• R = Proj`. Here, η2(cs) < w(c) follows from χ(t) · χ(u) < χ(〈t, u〉).

• R = Sdec`. The following calculation establishes the desired property:

η2(cs) = w(M,u |{|u|}k, AB t) + w(M |{|u|}k, AB k)
= χ(M) · χ(u) · θ(t) + χ(M) · θ(k)
< χ(M) · χ(u) · θ(t) + χ(M) · (θ(k) + 1) · θ(t)
= χ(M) · (χ(u) + θ(k) + 1) · θ(t)
= χ(M) · χ({|u|}k) · θ(t)
= w(M, {|u|}k |AB t)
= w(c)

We leave the remaining cases as an exercise.

Theorem 5. (Termination) The constraint reduction relation is well-founded.

Proof. Follows easily from Lemmas 10, 11, and 12.

3.2.5 Completeness

Under a reasonable well-formedness condition on the constraint system, one can
show the completeness of the constraint reduction. Completeness means that
every solution can be found by a suitable constraint reduction sequence.

Theorem 6. (Completeness) Constraint solving is complete, i.e., sol(cs) ⊆
red(cs) for well-formed constraints cs.

However, this theorem is out of the scope of our formalization work and we
therefore omit its proof. We refer the interested reader to [2] for more details.

21

3.3 Assignments
Assignment 5 (Transfer of unification theory). We first transfer some defini-
tions and results from our development in Section 2. Create a new theory Term
for this purpose that imports the theory from Section 2.4. The idea is that
all relevant results are transferred such that no linking definitions need to be
unfolded outside this theory later in the development.

(a) Formalize the message term algebra as a datatype msg with datatype_new.

Hints: Define separate constructors for variables and constants that take the
name of the variable or constant as argument. We suggest to use strings
(type string) as variables and constants and not to use subscripting for keys
in cryptographic operations.

(b) Define a non-recursive data type symbol representing the the signature (i.e.,
the function symbols) used by message terms. Define a function arity ::
symbol ⇒ nat denoting the arity of each message constructor.

(c) Embed messages into the type of general terms with function symbols taken
from symbol such that embedded messages respect the arity constraints given
by arity . To that end, define a pair of functions

embed :: "msg ⇒(symbol, ...) term "
msg_of_term :: "(symbol, ...) term ⇒msg "

(where ... denotes the type of variables you chose in 5a), and prove that
the functions satisfy the three properties of an embedding:

lemma wf_term_embed [simp]: "wf_term arity (embed msg) "
lemma msg_of_term_embed [simp]: "msg_of_term (embed msg) = msg "
lemma embed_msg_of_term [simp]:

"wf_term arity t =⇒ embed (msg_of_term t) = t "

Derive the following properties about the embedding:

lemma wf_subst_embed [simp]: "wf_subst arity (embed ◦ σ) "

lemma msg_of_term_inject:
"J wf_term arity t1; wf_term arity t2 K
=⇒ msg_of_term t1 = msg_of_term t2 ←→ t1 = t2 "

(d) Transfer the functions fv, sapply, unifies and unify to message terms by
defining them via the embedding. Remember to transfer the properties of
these functions, too, if you need them.

(e) Transfer the theorem that unification returns a unifier from Assignment 3bi
to message terms.

(f) Transfer your formalization of Lemma 3 from Section 2 to message terms.

22

Assignment 6 (Intruder deduction). Create a new theory Deduction for the
formalization of Section 3.

(a) Formalize the intruder deduction relation defined in Figure 1 as an inductive
predicate.

inductive deduce :: "msg set ⇒msg ⇒ bool " (infix "` " 72)

Here are some examples with which you can test your definition.

• {|m|}x, x ` m
• 〈m,n〉 ` h(〈n,m〉)
• {|m|}k, {k}ι ` 〈m, [m]ι〉

(b) Prove the following lemmas by rule induction:

lemma deduce_weaken:
assumes "G ` t " and "G ⊆ H "
shows "H ` t "

lemma deduce_cut:
assumes "insert t H ` u " and "H ` t "
shows "H ` u "

Assignment 7 (Constraint systems and constraint reduction). We formalize
constraints and constraint systems (Definition 1) using lists for all finite sets.

datatype_new constraint =
Constraint "msg list " "msg list " "msg " ("((2_/|_)/ B_) " [67,67,67]66)

Note that a list imposes an order on its elements, unlike a finite set. The
presentation in the previous section assumes that there is no such order. Con-
sequently, your formalisation must account for this change of representation.

Hint: First, you should set for yourself a convention on how to deal with the
order of elements. Then, stick to this convention in all of your development. For
example, if you decide to always add inserted elements to the front of the list,
then all your definitions should do so and your statements should also exploit
this fact. If your statement requires a different order than your definitions, its
proof will be long-winded and technical.

(a) Lift the notions of free variables and substitutions as well as the main lem-
mas about them to constraints and constraint systems.

(b) Formalize the set sol of solutions (Definition 2) and prove Lemmas 5 and 6
about it.

(c) Formalize the constraint reduction relations 1
σ from Figure 2, the relations

 σ defined by the rule Context, and the transitive closures ∗σ. Here are
the types and suggested syntactic sugar for these relations.

23

inductive rer1 :: "constraint ⇒ subst ⇒ constraint_system ⇒ bool "
("(_)/ \<^sub>1[_]/ (_) " [64,64,64]63)

inductive rer :: "constraint_system ⇒subst ⇒ constraint_system ⇒ bool "
("_/ [_]/ _ " [73,73,73]72)

inductive rer_star :: "constraint_system ⇒subst ⇒ constraint_system ⇒ bool "
("_/ ∗[_]/ _ " [73,73,73]72)

Hint: Use a separate composition rule for each f ∈ Σc.

(d) Define a predicate that characterizes the simple constraints and its extension
to constraint systems. Then define the set red of reducts (Definition 3).

Assignment 8 (Properties of constraint reduction).

(a) Prove the soundness of the reduction relation, i.e., that red(cs) ⊆ sol(cs)
(Theorem 4).

(b) (F) Prove the well-foundedness of the reduction relation (Theorem 5).

Assignment 9 (Implementation (F)). Implement the constraint solving pro-
cess as a functional program. To that end, create a new theory Execute for the
implementation.

(a) Implement functions which, when given a constraint (system), compute the
list of all possible successor constraint systems and the associated substitu-
tion under 1 and .

(b) Implement the constraint reduction process as a function search such that
search cs returns Some (cs’, σ) consisting of a simple constraint system cs′

and a substitution σ such that cs ∗[σ] cs ’ if it exists and fails with None
otherwise. Use the functions from 9a.

function search :: "constraint_system ⇒(constraint_system × subst) option "

For the termination proof use the result from the previous assignment that
the one-step reduction relation is well-founded.

Hint: search can stop exploring states as soon as it has found any simple
constraint system. It does not have to explore the whole search tree.

(c) Test your search procedure on the following examples:

Key transport protocol
a, b, ι | B〈A0, B0〉

{〈k0, [k0]A0
〉}B0

, a, b, ι | B{〈K1, [K1]a〉}b
{|m1|}K1

, {〈k0, [k0]A0
〉}B0

, a, b, ι | B{|Z0|}k0
{|m1|}K1

, {〈k0, [k0]A0
〉}B0

, a, b, ι | B〈K1,m1〉

24

Needham-Schröder Public-Key protocol
a, b, ι | B〈A0, B0〉

{〈na0, A0〉}B0
, a, b, ι | B{〈NA1, a〉}b

{〈NA1, nb1〉}a, {〈na0, A0〉}B0
, a, b, ι | B{〈na0,NB0〉}A0

{NB0}B0 , {〈NA1, nb1〉}a, {〈na0, A0〉}B0 , a, b, ι | B{nb1}b
{NB0}B0 , {〈NA1, nb1〉}a, {〈na0, A0〉}B0 , a, b, ι | B〈NA1, nb1〉

Hint: Results are easier to read if you import the theories
~~/src/HOL/Library/Code_Target_Nat and ~~/src/HOL/Library/Code_Char.

Assignment 10 (Properties of implementation (F)). Finally, we prove prop-
erties about our implementation.

(a) Prove that your search procedure is sound with respect to the constraint
reduction relation.

(b) Prove that your search procedure is complete with respect to the constraint
reduction relation.

4 General advice
Here are some points of general advice that should help you with the develop-
ment:

• Be careful about abstraction. Abstraction is very helpful in keeping proof
goals manageable. In particular, the use of fun for defining non-recursive
functions without pattern matching provides no abstraction, in contrast
to definitions.

• Define introduction, elimination, and destruction rules for the important
definitions. This allows you to reason about the defined objects without
the need to unfold their definition each time.

• Turn lists into sets where you can. For example, avoid the use of list_all .

• Use library functions instead of introducing trivial recursive definitions.
For example, use list_sum instead of redefining it.

• You should guide the proofs in the direction you want rather than letting
the tool drive you in some direction. Think about what are appropriate
reasoning steps in the proof and use intermediate goals (with have) accord-
ingly. Do not let the tool drive you into taking meaningless micro-steps
(which also makes the resulting proofs hard to read).

• When a proof starts becoming too complicated, think about how to raise
the level of abstraction, e.g., by proving appropriate lemmas.

25

• Try to find abstract and general lemmas. These are often easier to prove
and more reusable than very specialized lemmas that only fit your precise
application. Think twice about the suitable formulation of a lemma.

• Use the final proof method (with qed) to cover proofs of easy cases.

5 Project deliverables
The following deliverables are due:

Review of main definitions The definitions of the unification algorithm and
of the constraint reduction system must be shown to the lecturers during
one of the Tuesday sessions (or be sent to them by e-mail). This review
shall ensure that the specification are correct and not overly complicated.
We recommend that each team do this as soon as the definitions are
finished.

Formalisation The complete Isabelle2015 development of each group must be
handed in on Dec 18, 2015 by e-mail to the lecturers. All sources must
pass Isabelle/HOL’s proof checking. The use of sorry is fine, but results
in a deduction of points.

Presentation A 10 minute presentation on Dec 15, 2015.

The project and the exam will respectively contribute 40% and 60% to the
final grade for this course. Details about the final presentation and our grading
scheme can be found on the course website.

References
[1] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol

using FDR. Software — Concepts and Tools, 17:93–102, 1996.

[2] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In ACM Conference on Computer and Commu-
nications Security, pages 166–175, 2001.

[3] R. Needham and M. D. Schroeder. Using encryption for authentication in
large data networks of computers. Communications of the ACM, 21(12):993–
999, 1978.

[4] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of
sessions is NP-complete. In CSFW, pages 174–. IEEE Computer Society,
2001.

26

	1 Introduction
	2 Unification of First-order Terms
	2.1 Substitutions
	2.2 The unification problem
	2.3 Robinson-style unification algorithm
	2.4 Assignments

	3 Symbolic Verification of Security Protocols
	3.1 Security protocol model
	3.2 Constraint-based protocol analysis
	3.2.1 Constraint systems
	3.2.2 Constraint solving
	3.2.3 Soundness
	3.2.4 Termination
	3.2.5 Completeness

	3.3 Assignments

	4 General advice
	5 Project deliverables

