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Overview

Goal: decide, whether a security protocol leaks sensitive information.

Modeled protocol messages as first-order algebra formulas.

Models intruder capabilities by rules for derivation content from messages.

Describe a unification algorithm for equation over first-order algebra.

Run the protocol symbolically and let the unification deduce target messages.
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First-order Algebra Terms

A free term algebra TΣ(V) is a set of terms over variables V and symbols of Σ.

A substitution is a function σ : V → TΣ(V) on variables.

A unification problem U is set of equations over TΣ(V): U = {(t1, u1), . . . , (tn, un)}.
A unifier for U is a substitution σ such that σ · t = σ · u for all (t, u) ∈ U.

A unifier σ is the most general unifier (MGU), iff any other τ = υ ◦ σ.

Example

Let u = f (x , h(x)) and t = f (y , z).

Let U = {(u, t)}. σ = [x := y , z := h(y)] is a MGU for U.

A unifier τ = [x := a, y := a, z := h(a)] is less general, as τ = [y := a] ◦ σ.
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Robinson-style unification algorithm

Algorithm: UNIFY(U)
Data: A unification problem U
Result: MGU substitution σ for U

1 if U = ∅ then
2 return id
3 let (u, t) ∈ U and U ′ = U \ {(u, t)}
4 if u is a variable x then
5 if x 6∈ fv(t) then
6 return UNIFY([x := t] · U ′) ◦⊥ [x := t])
7 else if x = t then
8 return UNIFY(U ′)
9 else

10 return ⊥
11 else if t is a variable x then
12 return UNIFY(U ′ ∪ {(t, u)})
13 else if u = f (u1, . . . , un) ∧ t = f (t1, . . . , tn) then
14 return UNIFY(U ′ ∪ {(ui , ti ) | 1 ≤ i ≤ n})
15 else
16 return ⊥

Example

Let u = f (x , h(x)) and t = f (y , z).

1 Line 13: u = f (. . . ), t = f (. . . ).
UNIFY ({(x , y), (h(x), z)}).

2 Line 5: u = x , t = y , x 6∈ fv(y).
UNIFY ({(h(y), z)}) ◦ [x := y ].

3 Line 11: u = h(y), t = z , t ∈ V.
UNIFY ({(z , h(y))}).

4 Line 5: u = z , t = h(y), z 6∈ fv(y).
UNIFY (∅) ◦ [z := h(y)].

5 Line 1: U = ∅, return id .

Solution σ = [x := y ] ◦ [z := h(y)]
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Security protocol model

Protocol messages are terms from TΣ(V).

The constants are for agent names and nonces.

The functions denote security primitives (h(t), {|t|}k , {t}k , [t]k), and tuples 〈t1, t2〉.
Role-based protocol specification consists of send and receive events.

Example (Needham–Schroeder Public-Key Protocol)

NSPK (A) = send({A, na}B) · recv({na,NB}A) · send({NB}B)

NSPK (B) = recv({A,NA}B) · send({NA, nb}A) · recv({nb}B)

The protocol is executed in threads.

Protocol state (IK , th) consists of intruder knowledge IK and thread pool th.

A send(t) event adds term t to IK and pop the event from the thread.
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Intruder capabilities

T ` u denotes the capability of deriving a message u from observed messages T .

Axiom rule

t ∈ T
Ax

T ` t
Composition rule

T ` t1, . . . ,T ` tn Comp (f ∈ ΣC )
T ` f (t1, . . . , tn)

Analysis rules
T ` 〈t1, t2〉

ProjiT ` ti

T ` {|t|}k ,T ` k
Sdec

T ` t

T ` {t}k ,T ` k
Adec

T ` t
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Constraint-based protocol analysis

A decision procedure removes branching by symbolic execution.

The trace tr is solved later by the unification of the symbolic variables.

The trace σ · tr corresponds to the ground execution of the protocol.

Example (Needham–Schroeder Public-Key Protocol)

NSPK (0) = send0({A0, na0}B0) · recv0({na0,NB0}A) · send0({NB0}B)

NSPK (1) = recv1({A1,NA1}B1) · send1({NA1, nb1}A1) · recv1({nb1}B1)

Define the protocol secrecy by adding extra message: recv1(〈NA1, nb1〉).

Intruder knowledge initially contain IK0 ` 〈A0,B0,A1,B1〉.
send(t) extends it by t: IK1 = IK0 ∪ {A0, na0}B0 .

recv(t) adds constraint t: IK1 ` {A1,NA1}B1 .

Lowe’s attack: σ = [A0 := a,B0 := ι,A1 := a,B1 := b,NB0 := nb1,NA1 := na0].
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Constraint system

An intruder deduction constraint c = M | A B t.

A constraint system cs is a finite set of constraints.

A constraint M | A B t is intruder derivable by σ iff σ · (M ∪ A) ` σ · t.

A solution σ of cs makes all c ∈ cs intruder derivable.

Set of all solutions is called solution set:

sol(cs) = {σ | ∀(M | A B t) ∈ cs. σ · (M ∪ A) ` σ · t}.
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Constraint solving

Unification rule
Unif` M | A B t  1

σ ∅ if t 6∈ V, u ∈ M ∪ A, and σ = UNIFY (t, u)

Composition rule (f ∈ ΣC)
Comp` M | A B f (t1, . . . , tn) 1

id {M | A B t1, . . . ,M | A B tn}

Analysis rules
Proj` M ∪ {〈u, v〉} | A B t  1

id {M ∪ {u, v} | A ∪ 〈u, v〉 B t}
Sdec` M ∪{{|u|}k} | A B t  1

id {M ∪{u} | A∪{{|u|}k} B t,M ∪{u} | A∪{{|u|}k} B k}
Adec` M ∪ {{u}ι} | A B t  1

id {M ∪ {u} | A ∪ {{u}ι} B t}
Ksub` M ∪ {{u}x} | A B t  1

[x :=ι] {[x := ι] · (M ∪ {u} | A ∪ {u}x B t)}

Lifting c to cs
c  1

σ cs
Context

c ∪ cs ′  σ cs ∪ σ · cs ′
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Finding solutions

The relation  σ is single reduction step. Let  ∗σ be reflexive and transitive closure.

The reduction stops at simple constraint system, where all B t are variables.

The set of reducts of a cs is defined as

red(cs) = {τ ◦ σ | ∃cs ′. cs  ∗σ cs ′ ∧ cs ′ is simple ∧ τ ∈ sol(cs ′)}.

We want to show that red(cs) = sol(cs).

Then σ ∈ red(cs) is the ground substitution and σ · tr is a ground trace of the protocol.

We will use “cut rule” for intruder deduction: If T ∪ {t} ` u and T ` t then T ` u.
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Lemma (One-step reduction soundness)

If {c} ∗σ cs and τ ∈ sol(cs) then τ ◦ σ ∈ sol({c}).

Proof: One-step reduction soundness.

By case on the reduction rule R.

High-level proof scheme:

R = M | A B t  1
σ {c1, . . . , cn}.

The rule gives us: c = M | A B t, cs = {c1, . . . , cn}, and σ from  σ.

The τ makes all ci ∈ cs intruder derivable: τ · (Mi ∪ Ai ) ` τ · ti .
We have to show that the relation keeps the intruder derivability (for resulting c):
τ ◦ σ · (M ∪ A) ` τ ◦ σ · t.
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Unif` M | A B t  1
σ ∅ if t 6∈ V, u ∈ M ∪ A, and σ = UNIFY (t, u).

The rule gives us: c = M | A B t, cs = ∅, u ∈ M ∪ A, and σ = UNIFY (t, u).
UNIFY (t, u) ensures that σ · t = σ · u.

We have to show τ ◦ σ · (M ∪ A) ` τ ◦ σ · t.

σ · t = σ · u ∈ σ · (M ∪ A)
Ax

σ · (M ∪ A) ` σ · t

The axiom rule conclusion is free of τ , so ∀τ.τ ◦ σ ∈ sol({c}).

→
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Sdec` M∪{{|u|}k} | A B t  1
id {M∪{u} | A∪{{|u|}k} B t,M∪{u} | A∪{{|u|}k} B k}.

The rule gives us: c = M ∪ {{|u|}k} | A B t, σ = id , and cs = {cu, ck}.
By τ ∈ sol(cs), apply τ on both constraints: τ · (M ∪ A ∪ {u, {|u|}k}) ` τ · t (cu) and
τ · (M ∪ A ∪ {{|u|}k}) ` τ · k (ck).

Ax
τ · (M ∪ A ∪ {{|u|}k}) ` τ · {|u|}k

(by ck)
τ · (M ∪ A ∪ {{|u|}k}) ` τ · k

Sdec
τ · (M ∪ A ∪ {{|u|}k}) ` τ · u

From (cu) and the result of this derivation, we derive τ · (M ∪ A ∪ {{|u|}k}) ` τ · t (using the
cut rule).

→
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Comp` M | A B f (t1, . . . , tn) 1
id {M | A B t1, . . . ,M | A B tn}.

c = M | A B f (t1, . . . , tn), cs = {M | A B t1, . . . ,M | A B tn}, and σ = id .

We use τ ∈ sol(cs) and we have to show τ ◦ id = τ ∈ sol({c}).

τ · (M ∪ A) ` τ · t1, . . . , τ · (M ∪ A) ` τ · tn
Comp (f ∈ ΣC )

τ · (M ∪ A) ` τ · f (t1, . . . , tn)

In the conclusion of this derivation, τ satisfies definition of sol({c}).

→
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Proj` M ∪ {〈u, v〉} | A B t  1
id {M ∪ {u, v} | A ∪ 〈u, v〉 B t}.

c = M ∪ {〈u, v〉} | A B t, cs = {M ∪ {u, v} | A ∪ {〈u, v〉} B t}, and σ = id .

We have to show τ ◦ id = τ ∈ sol({c}). We begin with the axiom rule:
Ax

τ · (M ∪ {u, v} ∪ A ∪ {〈u, v〉}) ` τ · 〈u, v〉
Proj1

τ · (M ∪ {u, v} ∪ A ∪ {〈u, v〉}) ` τ · u

Ax
τ · (M ∪ {u, v} ∪ A ∪ {〈u, v〉}) ` τ · 〈u, v〉

Proj2
τ · (M ∪ {u, v} ∪ A ∪ {〈u, v〉}) ` τ · v

As τ ∈ sol(cs), τ · (M ∪ {u, v} ∪ A ∪ {〈u, v〉}) ` τ · t and the cut rule using the conclusion of
the derivations above, τ satisfies definition of sol({c}), as τ · (M ∪ {〈u, v〉} ∪ A) ` τ · t.

→
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Adec` M ∪ {{u}ι} | A B t  1
id {M ∪ {u} | A ∪ {{u}ι} B t}.

c = M ∪ {{u}ι} | A B t, cs = {M ∪ {u} | A ∪ {{u}ι} B t}, and σ = id .

We use τ ∈ sol(cs) and we have to show τ ◦ id = τ ∈ sol({c}).

τ · (M ∪ {u} ∪ A ∪ {{u}ι}) ` τ · {u}ι
Adec

τ · (M ∪ A ∪ {{u}ι}) ` τ · u

As τ ∈ sol(cs), τ · (M ∪ {u} ∪A∪ {{u}ι}) ` τ · t and the cut rule using the conclusion
of the derivation above, τ satisfies definition of sol({c}) using the cut rule, as
τ · (M ∪ {{u}ι} ∪ A) ` τ · t.

→
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Proof: One-step reduction soundness.

R = Ksub` M ∪ {{u}x} | A B t  1
[x :=ι] {[x := ι] · (M ∪ {u} | A ∪ {u}x B t)}.

c = M ∪ {{u}x} | A B t, cs = {[x := ι] · c}, and σ = [x := ι].

We use τ ∈ sol(cs) and we have to show τ ◦ [x := ι] ∈ sol({c}).

The τ ∈ sol(cs) can be rewrote as τ ∈ sol([x := ι] · {c}), then directly from Lemma 6
(If τ ∈ sol(σ · cs) then τ ◦ σ ∈ sol(cs).) we obtain τ ◦ [x := ι] ∈ sol({c}).

�
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Constraint solving soundness (red(cs) ⊆ sol(cs))

Lemma (Reduction over context soundness)

If cs  σ cs ′ and τ ∈ sol(cs ′) then τ ◦ σ ∈ sol(cs).

Lemma (Transitive and reflexive closure of reduction soundness)

If cs  ∗σ cs ′, cs ′ is simple, and and τ ∈ sol(cs ′) then τ ◦ σ ∈ sol(cs).

Theorem (Soundness)

Constraint solving is sound, i.e. red(cs) ⊆ sol(cs).

18 / 20



Constraint solving termination

Theorem (Termination)

The constraint reduction relation  is well-founded.

The number of free variables in constraints never increases.

The number of constraints can increase, but it decreases complexity of constraints.

Proof by case analysis.
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Conclusions

We defined formal notation messages of security protocol.

The protocol is then a queue of send and receive messages for each party.

The intruder capabilities are modeled as deduction rules.

Decision procedure based on constraint solving used to verify the protocol.

The protocol execution is symbolic. An information leak is searched by the unification.

Do you have any question?
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My questions

Now, the constraint-based analysis’ goal is to determine all nonces. Should not be
better to look for any information leakage?

The decision procedure can be programmed in Isabelle?

Why do you have ` in constraint reduction rules? Why not ’? Does the ` has some
meaning in the context?
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Found mistakes

UNIFY algorithm, line 17: 1 ≤ i ≤ n

Page 12, (rule Pairi )

UNIFY, not unify on page 19, in Lemma 7.
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Robinson-style unification algorithm

Algorithm: UNIFY(U)
Data: A unification problem U
Result: MGU substitution σ for U

1 if U = ∅ then
2 return id
3 let (u, t) ∈ U and U ′ = U \ {(u, t)}
4 if u is a variable x then
5 if x 6∈ fv(t) then
6 return UNIFY([x := t] · U ′) ◦⊥ [x := t])
7 else if x = t then
8 return UNIFY(U ′)
9 else

10 return ⊥
11 else if t is a variable x then
12 return UNIFY(U ′ ∪ {(t, u)})
13 else if u = f (u1, . . . , un) ∧ t = f (t1, . . . , tn) then
14 return UNIFY(U ′ ∪ {(ui , ti ) | 1 ≤ i ≤ n})
15 else
16 return ⊥

Theorem (Termination)

The algorithm UNIFY terminates on ∀U.

|fv(U)| Σ(t,u)∈U |t| |U|

Unify < ≥ <

Simp ≤ ≤ <

Occurs ⊥ ⊥ ⊥

Swap = < =

Fun = < ≥

Fail ⊥ ⊥ ⊥
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Data: A unification problem U
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13 else if u = f (u1, . . . , un) ∧ t = f (t1, . . . , tn) then
14 return UNIFY(U ′ ∪ {(ui , ti ) | 1 ≤ i ≤ n})
15 else
16 return ⊥

Theorem (Soundness)

When the algorithm UNIFY terminates
with a σ on the U, then the σ is MGU.

Proof by induction:

Base: For U = ∅ is σ = id .

Assume: U ′ = U \ {(x , t)} and
σ = UNIFY ([x := t] · U ′).

Step: Show σ′ = σ ◦⊥ [x := t] is
MGU for U. Let have another
unif. of U: τ = ρ ◦ σ. τ
unifies (x , t), so
τ ◦ [x := t] = ρ ◦ σ ◦ [x := t]
is the same as τ = ρ ◦ σ′.
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Theorem (Completeness)

If there is a unifier for U then UNIFY (U)
returns u unifier for U.

Proof from soundness and by induction:

Base: For U = ∅ is σ = id 6=⊥.

Inspect cases if ⊥ is possible.
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